如图1,已知 是 的外接圆, 的平分线 交 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)如图2,在图1的基础上做 的直径 交 于点 ,连接 ,过点 做 的切线 ,若 ,求 的度数;
(3)在(2)的条件下,若 的面积为 , 与 的面积比为 ,求 的长.
如图,在平面直角坐标系中,点 的坐标是 ,点 的坐标是 ,点 、 在以 为直径的半圆 上,且四边形 是平行四边形,则点 的坐标为 .
如图, 为 的直径, , 弦 ,垂足为 , 切 于点 , ,连接 、 、 ,下列结论不正确的是
A. |
|
B. |
是等边三角形 |
C. |
|
D. |
的长为 |
如图所示, 的半径为4,点 是 上一点,直线 过点 ; 是 上的一个动点(不与点 重合),过点 作 于点 ,交 于点 ,直径 延长线交直线 于点 ,点 是 的中点.
(1)求证:直线 是 的切线;
(2)若 ,求 的长.
如图,已知 、 是 上两点, 外角的平分线交 于另一点 , 交 的延长线于 .
(1)求证: 是 的切线;
(2) 为 的中点, 为 上一点, 交 于 ,若 , , ,求 的半径.
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
如图,四边形 为 的内接四边形.延长 与 相交于点 , ,垂足为 ,连接 , ,则 的度数为
A. B. C. D.
已知 是 的直径, 是圆上一点, 的平分线交 于点 ,过 作 交 的延长线于点 ,如图①.
(1)求证: 是 的切线;
(2)若 , ,求 的长;
(3)如图②,若 是 中点, 交直线 于点 ,若 , ,求 的半径.
如图,已知 的直径 ,弦 , 是 的中点,过点 作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)求 的长.
试题篮
()