优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 直线与圆的位置关系
初中数学

阅读材料:

在平面直角坐标系 xOy 中, 点 P ( x 0 y 0 ) 到直线 Ax + By + C = 0 的距离公式为: d = | A x 0 + B y 0 + C | A 2 + B 2

例如: 求点 P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离 .

解: 由直线 4 x + 3 y 3 = 0 知, A = 4 B = 3 C = 3

P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离为 d = | 4 × 0 + 3 × 0 3 | 4 2 + 3 2 = 3 5

根据以上材料, 解决下列问题:

问题 1 :点 P 1 ( 3 , 4 ) 到直线 y = 3 4 x + 5 4 的距离为  

问题 2 :已知: C 是以点 C ( 2 , 1 ) 为圆心, 1 为半径的圆, C 与直线 y = 3 4 x + b 相切, 求实数 b 的值;

问题 3 :如图, 设点 P 为问题 2 中 C 上的任意一点, 点 A B 为直线 3 x + 4 y + 5 = 0 上的两点, 且 AB = 2 ,请求出 S ΔABP 的最大值和最小值 .

来源:2017年山东省日照市中考数学试卷(已修)
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AD BAC 的平分线,以 AB 上一点 O 为圆心的半圆经过 A D 两点,交 AB E ,连接 OC AD 于点 F

(1)判断 BC O 的位置关系,并说明理由;

(2)若 OF : FC = 2 : 3 CD = 3 ,求 BE 的长.

来源:2016年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在等腰 ΔABC 中, AB = BC ,以 BC 为直径的 O AC 相交于点 D ,过点 D DE AB CB 延长线于点 E ,垂足为点 F

(1)判断 DE O 的位置关系,并说明理由;

(2)若 O 的半径 R = 5 tan C = 1 2 ,求 EF 的长.

来源:2017年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O 的半径为2,圆心 O 到直线 l 的距离为4,有一内角为 60 ° 的菱形,当菱形的一边在直线 l 上,另有两边所在的直线恰好与 O 相切,此时菱形的边长为                

来源:2016年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

来源:2016年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = 4 9 x 2 - 4 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C C 的半径为 5 P C 上一动点.

(1)点 B C 的坐标分别为 B (        ) C (       )

(2)是否存在点 P ,使得 ΔPBC 为直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)连接 PB ,若 E PB 的中点,连接 OE ,则 OE 的最大值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔAOB 中, O = 90 ° AO = 8 cm BO = 6 cm ,点 C A 点出发,在边 AO 上以 2 cm / s 的速度向 O 点运动,与此同时,点 D 从点 B 出发,在边 BO 上以 1 . 5 cm / s 的速度向 O 点运动,过 OC 的中点 E CD 的垂线 EF ,则当点 C 运动了   s 时,以 C 点为圆心, 1 . 5 cm 为半径的圆与直线 EF 相切.

来源:2016年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 AD 经过 O 上的点 A ΔABC O 的内接三角形,并且 CAD = B

(1)判断直线 AD O 的位置关系,并说明理由;

(2)若 CAD = 30 ° O 的半径为1,求图中阴影部分的面积.(结果保留 π )

来源:2018年辽宁省丹东市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 O D 分别为 AB BC 的中点,连接 OD ,作 O AC 相切于点 E ,在 AC 边上取一点 F ,使 DF = DO ,连接 DF

(1)判断直线 DF O 的位置关系,并说明理由;

(2)当 A = 30 ° CF = 2 时,求 O 的半径.

来源:2018年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 O 的半径为 5 cm ,圆心 O 到直线 l 的距离为 5 cm ,则直线 l O 的位置关系为 (    )

A.相交B.相切C.相离D.无法确定

来源:2018年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AC AD O 的两条割线, AC O 交于 B C 两点, AD 过圆心 O 且与 O 交于 E D 两点, OB 平分 AOC

(1)求证: ΔACD ΔABO

(2)过点 E 的切线交 AC F ,若 EF / / OC OC = 3 ,求 EF 的值. [ 提示: ( 2 + 1 ) ( 2 1 ) = 1 ]

来源:2019年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

以坐标原点 O 为圆心,作半径为2的圆,若直线 y = x + b O 相交,则 b 的取值范围是 (    )

A. 0 b < 2 2 B. 2 2 b 2 2 C. 2 3 < b < 2 3 D. 2 2 < b < 2 2

来源:2017年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ABC = 90 °

(1)作 ACB 的平分线交 AB 边于点 O ,再以点 O 为圆心, OB 的长为半径作 O ;(要求:不写做法,保留作图痕迹)

(2)判断(1)中 AC O 的位置关系,直接写出结果.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学直线与圆的位置关系试题