如图,等边△ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC上一点;若∠APD=60°,则CD长是
A. | B. | C. | D. |
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.已知,的顶点都在格点上,,,,若在边上以某个格点为端点画出长是的线段,使线段另一端点恰好落在边上,且线段与点C构成的三角形与相似,请你在图中画出线段(不必说明理由)
如图①,△ABC中,,∠ABC=,将△ABC绕点A顺时针旋转得到△AB ¢C ¢,设旋转的角度是.
(1)如图②,当=" " °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上;
(2)如图③,连结BB ¢、CC ¢, CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 ,
(不含全等三角形),并选一对证明.
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转角(且≠ 90°),得到Rt△,边与AB所在直线交于点D,过点 D作DE∥交边于点E,连接BE.
(1)如图1,当边经过点B时,= °;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3) 设 BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
时,求AD的长,并判断此时直线与⊙E的位置关系.
已知:如图,在△ABC中,AB="AC=" 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.
(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长.
如图,在△ABC中,DE∥AB分别交AC,BC于点D,E,若AD=2,CD=3,则△CDE与△CAB的周长比为
如图,将△ABC的三边分别扩大一倍得到△(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是( ).
A. | B. | C. | D. |
如图,在中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为( )
A. | B. | C. | D.2 |
在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:( )
A.BC=B′C′ | B.∠A=∠A′ | C.AC=A′C′ | D.∠C=∠C′ |
如下图,在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D。若BD=1,则AB=_____
和是绕点旋转的两个相似三角形,其中与、与为对应角.
(1)如图1,若和分别是以与为顶角的等腰直角三角形,且两三角形旋转到使点、、在同一条直线上的位置时,请直接写出线段与线段的关系;
(2)若和为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由;
(3)若和为如图3的两个三角形,且=,,在绕点旋转的过程中,直线与夹角的度数是否改变?若不改变,直接用含、的式子表示夹角的度数;若改变,请说明理由.
试题篮
()