赚现金
已知函数.(1)若函数在处取得极值,且函数只有一个零点,求的取值范围.(2)若函数在区间上不是单调函数,求的取值范围.
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/每小时)的函数解析式可以表示为,已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
已知是定义在上的奇函数,且,若,有恒成立.(1)判断在上是增函数还是减函数,并证明你的结论;(2)若对所有恒成立,求实数的取值范围。
若曲线的所有切线中,只有一条与直线垂直,则实数的值等于( )
函数 的零点所在的区间为( )
设函数,若,则( )
在△ABC中,若,则△ABC是( )
在△ABC中,已知,则角A为( )
在△中,角的对边为,若,则的值为( )
已知集合,,则___ __.
函数在区间内的零点个数是( )
已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴直线与椭圆相交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围.
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,.(Ⅰ)求证:平面⊥平面;(Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.
已知平面向量,,,其中,且函数的图象过点.(1)求的值;(2)将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值.
试题篮