如图,在平面直角坐标系 中, 是椭圆 的右焦点,直线 与椭圆交于 两点,且 , 则该椭圆的离心率是 ________.
将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .
在直角坐标系xOy中,直线l1的参数方程为 (t为参数),直线l2的参数方程为 .设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设 ,M为l3与C的交点,求M的极径.
已知函数 .
(1)若 ,求a的值;
(2)设m为整数,且对于任意正整数n, ,求m的最小值.
已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点 ,求直线l与圆M的方程.
如图,四面体 ABCD中, 是正三角形, 是直角三角形, .
(1)证明: ;
(2)过 AC的平面交 BD于点 E,若平面 AEC把四面体 ABCD分成体积相等的两部分,求二面角 的余弦值.
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 |
[10,15) |
[15,20) |
[20,25) |
[25,30) |
[30,35) |
[35,40) |
天数 |
2 |
16 |
36 |
25 |
7 |
4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
试题篮
()