优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题
高中数学

ΔABC 的内角 的对边分别为 a , b , c , 已知 sin A + 3 cos A = 0 , a = 2 7 , b = 2 .

(1)求角 A 和边长 c

(2)设 D BC 边上一点,且 ,求 ΔABD 的面积.

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

①当直线ABa成60°角时,ABb成30°角;

②当直线ABa成60°角时,ABb成60°角;

③直线ABa所成角的最小值为45°;

④直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = x + 1 x 0 2 x x > 0 则满足 f ( x ) + f ( x - 1 2 ) > 1 x的取值范围是____________.

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

设等比数列 a n 满足a1 + a2 = –1, a1a3 = –3,则a4 = ___________.

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 AP = λ AB + AD ,则 λ + μ 的最大值为(   

A.

3

B.

2 2

C.

5

D.

2

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = x 2 - 2 x + a ( e x - 1 + e - x + 1 ) 有唯一零点,则 a =   

A.

- 1 2

B.

1 3

C.

1 2

D.

1

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知椭圆 C x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右顶点分别为 A 1A 2,且以线段 A 1 A 2为直径的圆与直线 bx - ay + 2 ab = 0 相切,则 C的离心率为(   

A.

6 3

B.

3 3

C.

2 3

D.

1 3

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

等差数列 a n 的首项为 1 ,公差不为 0 .若 a 2 a 3 a 6 成等比数列,则 a n 的前 6 项的和为(    

A.

- 24

B.

- 3

C.

3

D.

8

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(   

A.

π

B.

3 π 4

C.

π 2

D.

π 4

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知抛物线C y 2 =2px经过点 P (1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB,且直线PAy轴于M,直线PBy轴于N

(Ⅰ)求直线l的斜率的取值范围;

(Ⅱ)设O为原点, QM = λ QO QN = μ QO ,求证: 1 λ + 1 μ 为定值.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

设函数 f x =[ a x 2 - 4 a + 1 x + 4 a + 3 ] e x

(1)若曲线在点(1, f 1 )处的切线与 x 轴平行,求 a

(2)若 f x x = 2 处取得极小值,求 a 的取值范围.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

电影公司随机收集了电影的有关数据,经分类整理得到下表:

电影类型

第一类

第二类

第三类

第四类

第五类

第六类

电影部数

140

50

300

200

800

510

好评率

0.4

0.2

0.15

0.25

0.2

0.1

好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.

假设所有电影是否获得好评相互独立.

(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;

(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;

(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用" ξ k = 1 "表示第 k类电影得到人们喜欢," ξ k = 0 "表示第 k类电影没有得到人们喜欢( k=1,2,3,4,5,6).写出方差 D ξ 1 D ξ 2 D ξ 3 D ξ 4 D ξ 5 D ξ 6 的大小关系.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

如图,在三棱柱 ABC A 1 B 1 C 1 中, C C 1 平面 ABCDEFG分别为 A A 1 AC A 1 C 1 的中点, AB=BC= 5 AC= A A 1 =2.

(1)求证: AC⊥平面 BEF

(2)求二面角 B−CDC 1的余弦值;

(3)证明:直线 FG与平面 BCD相交.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

在△ABC中,a=7,b=8,cosB= - 1 7

(1)求∠A;

(2)求AC边上的高.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

已知椭圆 M x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,双曲线 N x 2 m 2 - y 2 n 2 = 1 .若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

高中数学试题