的内角 的对边分别为 已知 .
(1)求角 和边长 ;
(2)设 为 边上一点,且 ,求 的面积.
a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
设等比数列 满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________.
在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 = + ,则 + 的最大值为( )
A. |
3 |
B. |
2 |
C. |
|
D. |
2 |
已知椭圆 C: 的左、右顶点分别为 A 1, A 2,且以线段 A 1 A 2为直径的圆与直线 相切,则 C的离心率为( )
A. |
|
B. |
|
C. |
|
D. |
|
等差数列 的首项为 ,公差不为 .若 、 、 成等比数列,则 的前 项的和为( )
A. |
|
B. |
|
C. |
|
D. |
|
已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )
A. |
|
B. |
|
C. |
|
D. |
|
已知抛物线C: =2px经过点 (1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点, , ,求证: 为定值.
设函数 =[ ] .
(1)若曲线在点(1, )处的切线与 轴平行,求 ;
(2)若 在 处取得极小值,求 的取值范围.
电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 |
第一类 |
第二类 |
第三类 |
第四类 |
第五类 |
第六类 |
电影部数 |
140 |
50 |
300 |
200 |
800 |
510 |
好评率 |
0.4 |
0.2 |
0.15 |
0.25 |
0.2 |
0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用" "表示第 k类电影得到人们喜欢," "表示第 k类电影没有得到人们喜欢( k=1,2,3,4,5,6).写出方差 , , , , , 的大小关系.
如图,在三棱柱 ABC− 中, 平面 ABC, D, E, F, G分别为 , AC, , 的中点, AB=BC= , AC= =2.
(1)求证: AC⊥平面 BEF;
(2)求二面角 B−CD− C 1的余弦值;
(3)证明:直线 FG与平面 BCD相交.
试题篮
()