一次考试中,5名同学的语文、英语成绩如下表所示:
(1)根据表中数据,求英语分y对语文分x的线性回归方程;
(2)要从4名语文成绩在90分(含90分)以上的同学中选出2名参加一项活动,以表示选中的同学的英语成绩高于90分的人数,求随机变量的分布列及数学期望.
(线性回归方程,,,其中,为样本平均值,,的值的结果保留二位小数.)
如图,椭圆长轴的端点为A、B,O为椭圆的中心,F为椭圆的右焦点,且,.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心,若存在,求出直线l的方程;若不存在,请说明理由.
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率;
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
(注:,n=a+b+c+d)
|
生产能手 |
非生产能手 |
合计 |
25周岁以上组 |
|
|
|
25周岁以下组 |
|
|
|
合计 |
|
|
|
试题篮
()