优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题
高中数学

C.(选做题选修 4 - 3 )在平面之间坐标系 xOy 中,已知直线 I 的参数方程式为 x = 1 + 1 2 t y = 3 2 t ( t 为参数 )

椭圆 C 的参数方程为 x = cos θ , y = 2 sin θ ( θ 为参数).设直线 I 与椭圆 C 相交于 A , B 两点, 求线段 AB 的长.

来源:2016年全国统一高考试卷(江苏卷)
  • 题型:未知
  • 难度:未知

B.(选择题选修 4-2)已知矩阵 A = 1 2 0 - 2 , 矩阵 B 的逆矩阵 B - 1 = 1 - 1 2 0 2 , 求矩阵 AB .

来源:2016年全国统一高考试卷(江苏卷)
  • 题型:未知
  • 难度:未知

U = { 1 , 2 , , 100 } . 对数列 a n n N * U 的子集 T , 若 T = , 定义 S T = 0 ;

T = t 1 , t 2 , , t k , 定 义 S T = a t 1 + a t 2 + + a t k . 例 如 : T = { 1 , 3 , 66 } 时 ,

S T = a 1 + a 3 + a 66 . 现设 a n n N * 是公比为 3 的等比数列, 且当 T = { 2 , 4 } 时,

S T = 30

(1) 求数列 a n 的通项公式;

(2) 对任意正整数 k ( 1 k 100 ) , 若 T { 1 , 2 , , k } , 求证: S T < a k + 1 ;

(3) 设 C U , D U , S C S D , 求证: S C + S C D 2 S D .

来源:2016年全国统一高考试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) =│ x+1│-│ x-2│.

(1)求不等式 f ( x ) ≥1的解集;

(2)若不等式 f ( x ) x 2- x+ m的解集非空,求实数 m的取值范围.

来源:2017年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

n为正整数,集合 A= { α | α = t 1 , t 2 , , t n , t k 0 , 1 , k = 1 , 2 , , n } .对于集合 A中的任意元素 α = x 1 , x 2 , , x n β = y 1 , y 2 , , y n ,记

M α β )= 1 2 x 1 + y 1 - x 1 - y 1 + x 2 + y 2 - x 2 - y 2 + + x n + y n - x n - y n

(Ⅰ)当 n=3时,若 α = 1 , 1 , 0 β = 0 , 1 , 1 ,求 M α , α )和 M α , β )的值;

(Ⅱ)当 n=4时,设 BA的子集,且满足:对于 B中的任意元素 α , β ,当 α , β 相同时, M α β )是奇数;当 α , β 不同时, M α β )是偶数.求集合 B中元素个数的最大值;

(Ⅲ)给定不小于2的 n,设 BA的子集,且满足:对于 B中的任意两个不同的元素 α , β M α β )=0.写出一个集合 B,使其元素个数最多,并说明理由.

来源:2018年全国统一高考理科数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

已知函数 f x = a x g x = lo g a x ,其中 a>1.

(I)求函数 h x = f x - x ln a 的单调区间;

(II)若曲线 y = f x 在点 x 1 , f x 1 处的切线与曲线 y = g x 在点 x 2 , g x 2 处的切线平行,证明 x 1 + g x 2 = - 2 lnln a ln a

(III)证明当 a e 1 e 时,存在直线 l,使 l是曲线 y = f x 的切线,也是曲线 y = g x 的切线.

来源:2018年全国统一高考理科数学试卷(天津卷)
  • 题型:未知
  • 难度:未知

已知 f x = x + 1 - ax - 1 .

(1)当 a = 1 时,求不等式 f x > 1 的解集;

(2)若 x 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = 5 - x + a - x - 2 .

(1)当 a = 1 时,求不等式 f ( x ) 0 的解集;

(2)若 f ( x ) 1 恒成立,求 a 的取值范围.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

设函数 f x = 2 x + 1 + x - 1

(1)画出 的图像;

(2)当 x [ 0 , + ) f x ax + b ,求 a + b 的最小值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知函数 f x = 2 + x + a x 2 ln 1 + x - 2 x

(1)若 a = 0 ,证明:当 - 1 < x < 0 时, f x < 0 ;当 x > 0 时, f x > 0

(2)若 x = 0 f x 的极大值点,求 a

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知斜率为 k 的直线 l 与椭圆 C    x 2 4 + y 2 3 = 1 交于 A B 两点,线段 AB 的中点为 M 1    m m > 0

(1)证明: k < - 1 2

(2)设 F C 的右焦点, P C 上一点,且 FP + FA + FB = 0 .证明: FA FP FB 成等差数列,并求该数列的公差.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

A    B    C    D 是同一个半径为4的球的球面上四点, ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D - ABC 体积的最大值为(   )

A.

12 3

B.

18 3

C.

24 3

D.

54 3

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 题型:未知
  • 难度:未知

已知函数 f x = x - ln x

(Ⅰ)若f(x)在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f(x 1)+f(x 2)>8−8ln2;

(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

来源:2018年全国统一高考数学试卷(浙江卷)
  • 题型:未知
  • 难度:未知

已知 f x = x + 1 - ax - 1 .

(1)当 a = 1 时,求不等式 f x > 1 的解集;

(2)若 x 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = 5 - x + a - x - 2 .

(1)当 a = 1 时,求不等式 f ( x ) 0 的解集;

(2)若 f ( x ) 1 恒成立,求 a 的取值范围.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

高中数学试题