如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.
(1)求椭圆的方程;
(2)过点任作一动直线交椭圆于两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.
定义:若在上为增函数,则称为“k次比增函数”,其中. 已知其中e为自然对数的底数.
(1)若是“1次比增函数”,求实数a的取值范围;
(2)当时,求函数在上的最小值;
(3)求证:.
已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().
(1)指出,并求与的关系式();
(2)求()的通项公式,并指出点列,,,向哪一点无限接近?说明理由;
(3)令,数列的前项和为,试比较与的大小,并证明你的结论.
已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().
(1)指出,并求与的关系式();
(2)求()的通项公式,并指出点列,, ,, 向哪一点无限接近?说明理由;
(3)令,数列的前项和为,设,求所有可能的乘积的和.
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:
(1)求,的标准方程;
(2)若与交于C、D两点,为的左焦点,求的最小值;
(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
已知函数.
(1)求的单调区间;
(2)若在上恒成立,求所有实数的值;
(3)对任意的,证明:
已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作直线(不与轴重合)交椭圆于、两点,连结、分别交直线于、两点,试探究直线、的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数
被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:
①; ②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,使得为等边三角形.
其中真命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作与轴不重合的直线交椭圆于、两点,连结、分别交直线于、两点.试问直线、的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立.
(1)请验证a=-2,b=-8满足题意.
(2)求出所有满足题意的实数a,b,并说明理由.
(3)若对一切x>2,均有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围.
设函数 ().
(1)求的单调区间;
(2)试通过研究函数()的单调性证明:当时,;
(Ⅲ)证明:当,且均为正实数, 时,.
定义域为的函数满足,当∈时,
(1)当∈时,求的解析式;
(2)当x∈时,≥恒成立,求实数的取值范围.
已知函数的值域为集合,关于的不等式的解集为,集合,集合
(1)若,求实数的取值范围;
(2)若,求实数的取值范围。
某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(和都是固定的正整数)。假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到。记该系收到李老师或张老师所发活动通知信息的学生人数为
(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(2)求使取得最大值的整数。
如图,两条相交线段、的四个端点都在椭圆上,其中,直线的方程为,直线的方程为.
(1)若,,求的值;
(2)探究:是否存在常数,当变化时,恒有?
试题篮
()