椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1
(1)若点E在SD上,且证明:平面;
(2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小
过双曲线的一个焦点作实轴的垂线,交双曲线于两点,若线段的长度恰等于焦距,则双曲线的离心率为( )
A. | B. | C. | D. |
已知椭圆E:=1(a>b>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线l:x=的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥,求出该圆的方程.
如图,摄影爱好者在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知摄影爱好者的身高约为米(将眼睛S距地面的距离SA按米处理).
(1)求摄影爱好者到立柱的水平距离AB和立柱的高度OB.
(2)立柱的顶端有一长为2米的彩杆MN,且MN绕其中点O在摄影爱好者与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影爱好者观察彩杆MN的视角∠MSN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.
抛物线的方程为,过抛物线上一点()作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足(且).
(1)求抛物线的焦点坐标和准线方程;
(2)设直线上一点,满足,证明线段的中点在轴上;
(3)当=1时,若点的坐标为,求为钝角时点的纵坐标的取值范围.
已知是等差数列,首项,前项和为.令,的前项和.数列是公比为的等比数列,前项和为,且,.
(1)求数列、的通项公式;
(2)证明:.
过椭圆=1上一点M作圆x2+y2=2的两条切线,点A,B为切点.过A,B的直线l与x轴、y轴分别交于P,Q两点,则△POQ的面积的最小值为( )
A. | B. | C.1 | D. |
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、.
(1)经判断点,在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.
在直角梯形中,,,,如图,把沿翻折,使得平面平面.
(1)求证:;
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.
已知.
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.
设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f;
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.
试题篮
()