某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 |
A |
B |
C |
D |
E E |
销售额x(千万元) |
3 |
5 |
6 |
7 |
9 9 |
利润额y(千万元) |
2 |
3 |
3 |
4 |
5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
某单位为了了解用电量y度与气温x0C之间的关系随机统计了某4天的用电量与当天气温
气温(0C) |
14 |
12 |
8 |
6 |
用电量 |
22 |
26 |
34 |
38 |
(1)求用电量y与气温x的线性回归方程;
(2)由(1)的方程预测气温为50C时,用电量的度数。
参考公式:
(本小题满分12分)是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:
时间 |
周一 |
周二 |
周三 |
周四 |
周五 |
车流量(万辆) |
|||||
的浓度(微克/立方米) |
(1)根据上表数据,请在下列坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出关于的线性回归方程;
(3)若周六同一时间段车流量是万辆,试根据(2)求出的线性回归方程预测,此时的浓度为多少(保留整数)?
(本小题满分10分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
[90,100] |
男 |
3 |
9 |
18 |
15 |
6 |
9 |
女 |
6 |
4 |
5 |
10 |
13 |
2 |
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
|
优分 |
非优分 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
100 |
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式
0.100 |
0.050 |
0.010 |
0.001 |
|
2.706 |
3.841 |
6.635 |
10.828 |
.
(本小题满分10分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
[90,100] |
男 |
3 |
9 |
18 |
15 |
6 |
9 |
女 |
6 |
4 |
5 |
10 |
13 |
2 |
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
|
优分 |
非优分 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
100 |
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式
0.100 |
0.050 |
0.010 |
0.001 |
|
2.706 |
3.841 |
6.635 |
10.828 |
.
在一次考试中,5名同学数学、物理成绩如下表所示:
学生 |
A |
B |
C |
D |
E |
数学(x分) |
89 |
91 |
93 |
95 |
97 |
物理(y分) |
87 |
89 |
89 |
92 |
93 |
(1)根据表中数据,求物理分对数学分的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量的分布列及数学期望.(附:回归方程中,,)
(本小题满分12分)某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右3个小组的频率之比为,其中第2小组的频数为.
(Ⅰ)求该校报名学生的总人数;
(Ⅱ)若从报名的学生中任选3人,设表示体重超过60kg的学生人数,求的数学期望与方差.
从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于和之间,将测量结果按如下方式分成八组:第一组,第二组,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线,
(1)写出第一次服药后与之间的函数关系式;
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到,参考数据:)
(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数(个) |
||||
加工的时间(小时) |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
衡阳市八中对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次.若某志愿者考核为合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列及数学期望.
(本小题满分12分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x |
1 |
2 |
3 |
4 |
5 |
命中率y |
0.4 |
0.5 |
0.6 |
0.6 |
0.4 |
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:
年份 |
2007 |
2008 |
2009 |
2010 |
2011 |
2012 |
2013 |
年份代号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
人均纯收入 |
2.9 |
3.3 |
3.6 |
4.4 |
4.8 |
5.2 |
5.9 |
(Ⅰ)求关于的线性回归方程;(已知b=0.5)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
试题篮
()