下表为某公司员工连续加班时间与制造产品的几组数据,根据表中提供的数据,求出y关于的线性回归方程为,则表中t的值为 .
3 |
4 |
5 |
6 |
|
2.5 |
t |
4 |
4.5 |
某产品的广告费用x与销售额y的统计数据如表,根据此表可得回归方程中的 为9.4,据此模型预报广告费用为6万元时销售额为
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
已知x与y之间的一组数据:
x |
0 |
1 |
2 |
3 |
y |
1 |
3 |
5 |
7 |
则y与x的线性回归方程为y=bx+a必过点__________________________.
对于有线性相关关系的变量x,y,测得一组数据如下表:
x |
2 |
4 |
5 |
6 |
8 |
y |
20 |
40 |
60 |
70 |
80 |
根据上表得它们的回归直线方程为,据此模型来预 测当x=20时,y的估计值为
某种产品的广告费用支出与销售额之间有如下的对应数据:
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
则回归直线方程为
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了 5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程
现发现表中有一个数据模糊看不清,请你推断出该数据的值为______
某工厂的某种型号的机器的使用年限和所支出的维修费用(万元)有下表的统计资料:
2 |
3 |
4 |
5 |
6 |
|
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
根据上表可得回归方程,据此模型估计,该型号机器使用年限为10年时维修费用约 万元(结果保留两位小数).
给出下列命题:
①线性回归方程 必过;
②函数的零点有2个;
③函数的图象与轴围成的图形面积是;
④函数是偶函数,且在区间内单调递增;
⑤函数的最小正周期为.其中真命题的序号是 。
某地区恩格尔系数与年份的统计数据如下表:
年份 |
2004 |
2005 |
2006 |
2007 |
恩格尔系数(%) |
47 |
45.5 |
43.5 |
41 |
从散点图可以看出与线性相关,且可得回归直线方程为,据此模型可预测2013年该地区的恩格尔系数(%)为 .
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据 收集到的数据(如下表),由最小二乘法求得回归直线方程
表中有一个数据模糊不清,请你推断出该数据的值为______ .
下表是某厂1~4月份用水量(单位:百吨)的一组数据,
月份x |
1 |
2 |
3 |
4 |
用水量y |
4.5 |
4 |
3 |
2.5 |
由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是y=-0.7x+a,则a=____ __.
某单位为了了解用电量度与气温℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程中,据此预测当气温为5℃时,用电量的度数约为 。
试题篮
()