在2014年3月15日,某超市对某种商品的销售量及其售价进行调查分析,发现售价x元和销售量y件之间的一组数据如下表所示:
售价x |
9 |
9.5 |
10 |
10.5 |
11 |
销售量y |
11 |
10 |
8 |
6 |
5 |
由散点图可知,销售量y与售价x之间有较好的线性相关关系,其线性回归方程是:y= -3.2x+a,则a=( )
A.-24 B.35.6 C.40.5 D.40
某车间加工零件的数量与加工时间的统计数据如下表:
零件数(个) |
10 |
20 |
30 |
加工时间(分钟) |
21 |
30 |
39 |
现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A.84分钟 B.94分钟 C.102分钟 D.112分钟
设有一个回归直线方程为,则变量x增加一个单位时
A.y平均增加1.5个单位 | B.y平均增加2个单位 |
C.y平均减少1.5个单位 | D.y平均减少2个单位 |
已知某回归直线过点,且样本数据中和的均值分别为
和,则此回归直线方程为 .
下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据. 根据表中提供的数据,求出关于的线性回归方程是,那么表中的值是( )
3 |
4 |
5 |
6 |
|
2.5 |
4 |
4.5 |
A. B. C. D.
两个变量之间的线性相关程度越低,则其线性相关系数的数值( )
A.越小 | B.越接近于 | C.越接近于 | D.越接近于 |
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下
|
男 |
女 |
合计 |
需要 |
40 |
30 |
|
不需要 |
160 |
270 |
|
合计 |
|
|
|
(1)将表格填写完整,并估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关系?
(3)根据(2)的结论,能否提出更好的调查方法估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附表:
P(K2≥k) |
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
调查某市出租车使用年限和该年支出维修费用(万元),得到数据如下:
使用年限 |
2 |
3 |
4 |
5 |
6 |
维修费用 |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
则回归方程,必过定点
A.(2,3) B.(3,4) C.(4,5) D.(5,6)
已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为,则( )
x |
0 |
1 |
3 |
4 |
y |
2.2 |
4.3 |
4.8 |
6.7 |
A. 3.25 B. 2.6 C. 2.2 D. 0
下表是某厂1—4月份用水量(单位:百吨)的一组数据:
月份x |
1 |
2 |
3 |
4 |
用水量y |
4.5 |
4 |
3 |
2.5 |
由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程为=-0.7x+a,则a等于( )
A.10.5 B.5.15 C.5.2 D.5.25
下列说法中正确的有( )
①若r>0,则x增大时,y也相应增大; ②若r<0,则x增大时,y也相应增大;
③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个点均在一条直线上.
A.①② | B.②③ | C.①③ | D.①②③ |
经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:
x |
15 |
16 |
18 |
19 |
22 |
y |
102 |
98 |
115 |
115 |
120 |
由表中样本数据求得回归方程为,则点与直线的位置关系是( )
A.点在直线左侧 B.点在直线右侧 C.点在直线上 D.无法确定
在一次独立性检验中,有300人按性别和是否色弱分类如下表:
|
男 |
女 |
正常 |
130 |
120 |
色弱 |
20 |
30 |
由此表计算得统计量K2=( ).
(参考公式:)
A.2 B.3 C.2.4 D.3.6
设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是( )
A.与具有正的线性相关关系 |
B.回归直线过样本点的中心 |
C.若该大学某女生身高增加lcm,则其体重约增加0.85kg |
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg |
试题篮
()