下列几种推理中是演绎推理的序号为( )
A.由,,猜想() |
B.半径为r的圆的面积,单位圆的面积 |
C.猜想数列、、的通项为() |
D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为 |
已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),,则第60个数对是( )
A.(3,8) | B.(4,7) | C.(4,8) | D.(5,7) |
跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格外跳到第8个格子的方法种数为( )
A.8种 | B.13种 |
C.21种 | D.34种 |
已知三角形的三边分别为,内切圆的半径为,则三角形的面积为四面体的四个面的面积分别为,内切球的半径为.类比三角形的面积可得四面体的体积为 ( )
A. | B. |
C. | D. |
有一段“三段论”推理是这样的:
对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中( )
A.大前提错误 | B.小前提错误 | C.推理形式错误 | D.结论正确 |
下面给出了关于复数的三种类比推理:①复数的加减法运算法则可以类比多项式的加减法运算法则;②由向量的性质类比复数的性质;③由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比错误的是
A.①③ | B.①② | C.③ | D.② |
设是由任意个人组成的集合,如果中任意4个人当中都至少有1个人认识
其余3个人,那么,下面的判断中正确的是 ( )
A.中没有人认识中所有的人 |
B.中至多有2人认识中所有的人 |
C.中至多有2人不认识中所有的人 |
D.中至少有1人认识中的所有人 |
下面几种推理中是演绎推理的为
A.由金、银、铜、铁可导电,猜想:金属都可导电; |
B.猜想数列的通项公式为; |
C.半径为圆的面积,则单位圆的面积; |
D.由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为 |
老师带甲乙丙丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,
四名学生回答如下:
甲说:“我们四人都没考好”;
乙说:“我们四人中有人考的好”;
丙说:“乙和丁至少有一人没考好”;
丁说:“我没考好”.
结果,四名学生中有两人说对了,则四名学生中 两人说对了.( )
A.甲 丙 | B.乙 丁 | C.丙 丁 | D.乙 丙 |
观察下面关于循环小数化分数的等式:,据此推测循环小数,可化成分数()
A. | B. | C. | D. |
我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值a,类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值( )
A.a | B.a | C.a | D.a |
试题篮
()