如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧.
(1)求证:平面;
(2)设二面角的大小为,若,求线段的长.
|
已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中所有正确命题的序号是___________.
①若m∥β,n∥β,m、nα,则α∥β .
②若α⊥γ,β⊥γ,α∩β=m,nγ,则m⊥n .
③若m⊥α,α⊥β,m∥n,则n∥β .
④若n∥α,n∥β,α∩β=m,那么m∥n .
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
设直线和平面,下列四个命题中,正确的是( )
A.若,则 |
B.,则 |
C.若,则 |
D.,则 |
已知正三棱柱ABC –A1B1C1中,AB = 2,AA1 =,点F,E分别是边A1C1和侧棱BB1的中点.
(Ⅰ)证明:FB⊥平面AEC;
(Ⅱ)求二面角F-AE-C的余弦值.
已知两条不同直线、,两个不同平面、,给出下列命题:
①若∥,则平行于内的所有直线;
②若,且⊥,则⊥;
③若,,则⊥;
④若,且∥,则∥;
其中正确命题的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1
已知是两条不同的直线,是一个平面,则下列说法正确的是( )
A.若,则 | B.若,则 |
C.若,则 | D.若,则 |
如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.
已知是两条不同的直线,是一个平面,则下列说法正确的是( )
A.若,则 | B.若,则 |
C.若,则 | D.若,则 |
试题篮
()