优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图2-3,在平面α内有ABCD,O为它的对角线的交点,点P在平面α外,且PA=PC,PB=PD,求证:PO⊥α.

图2-3

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

(1)证明:平面平面
(2)当三棱锥体积最大时,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

试证:若两个平行平面中的一个平面垂直于第三个平面,
则另一个平面也垂直于第三个平面.
已知:如图,为三个平面,.求证:
 

  • 题型:未知
  • 难度:未知

(本小题满分13分)在如图的几何体中,平面为正方形,平面为等腰梯形,

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

如图,过锐角△的重心,作,且使
求证:△和△都是直角三角形.

 

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在边长为的菱形中,,点分别是边的中点,,沿将△翻折到△,连接,得到如图的五棱锥,且.

(1)求证:平面
(2)求二面角的正切值.

  • 题型:未知
  • 难度:未知

在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作于点,连接

(Ⅰ)证明:
(Ⅱ)求异面直线所成角的余弦值及二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱上,且AE==2.

(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)
四面体ABCD中,对棱AD⊥BC,对棱AB⊥CD,试证明:AC⊥BD.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题