如图,已知,分别是正方形边、的中点,与交于点,、都垂直于平面,且,,是线段上一动点.
(Ⅰ)求证:平面平面;
(Ⅱ)若平面,试求的值;
(Ⅲ)当是中点时,求二面角的余弦值.
(本小题满分16分)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。
(Ⅰ)求证:
(Ⅱ)求证:平面平面
如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.
(1)求侧面与底面所成的二面角的大小;
(2)若是的中点,求异面直线与所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
(本小题满分10 分)在四棱柱P-ABCD中,底面ABCD为正方形,PD面ABCD,是的中点,作交于点,PD=DC。
(1)证明:∥平面;
(2)证明:平面。
某家居装饰设计的形状是如图所示的直三棱柱,其中,,是边长为2(单位:米)的正方形,,点为棱上的动点.
(Ⅰ)现需要对该装饰品的表面进行涂漆处理,假设每平方米的油漆费是40元,则需油漆费多少元?(提示:,结果保留到整数位)
(Ⅱ)当点为何位置时,平面?
(本小题满分14分)如图,在三棱锥中,平面平面,,、分别为、的中点.
(1)求证:∥平面;
(2)求证:.
如图,在四棱锥中,四边形是矩形,侧面⊥底面,若点分别是的中点.
(1)求证:∥平面;
(2)求证:平面⊥平面.
三棱柱中,侧棱平面,为等腰直角三角形,且,,,分别是,,的中点.
(1)求证:平面;
(2)求证:平面.
(本小题满分12分)在正三棱锥中,、分别为棱、的中点,且.
(1)求证:直线平面;
(2)求证:平面平面.
(本题12分).如图,四棱柱中,侧棱⊥底面ABCD,AB//DC,AB⊥AD,AD=CD=1,=AB=2,E为棱的中点.
(Ⅰ)证明
(Ⅱ)求二面角的正弦值.
(Ⅲ)设点M在线段上,且直线AM与平面所成角的正弦值为,求线段AM的长.
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M.
(1)求PB与平面ABCD所成角的大小;
(2)求证:PB⊥平面ADMN.
(本小题满分12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(Ⅰ)求证:直线BE⊥平面D1AE;
(Ⅱ)求点A到平面D1BC的距离.
试题篮
()