优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

  • 题型:未知
  • 难度:未知

如图,几何体是四棱锥,△为正三角形,.
(1)求证:
(2)若∠,M为线段AE的中点,求证:∥平面.

  • 题型:未知
  • 难度:未知

、如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE

  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;
(2)求二面角F-BD-C的余弦值.

  • 题型:未知
  • 难度:未知

直四棱柱的底面是菱形,,其侧面展开图是边长为的正方形.分别是侧棱上的动点,

(Ⅰ)证明:
(Ⅱ)在棱上,且,若∥平面,求.

  • 题型:未知
  • 难度:未知

在三棱锥中,是边长为的等边三角形,分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面⊥平面
(Ⅲ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,为正三角形,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.

(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为,求的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.

  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.

(1) 求证:平面;(2) 求几何体的体积.

  • 题型:未知
  • 难度:未知

如图,在长方体中,
,点在棱上移动 

(Ⅰ)证明:
(Ⅱ)当的中点时,求点到面的距离;



 

 

(Ⅲ)等于何值时,二面角的大小为



  • 题型:未知
  • 难度:未知

在直三棱柱中,为等腰直角三角形,,且,E、F分别为、BC的中点。

(1)求证:
(2)求二面角的余弦值。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,在四棱锥中,四边形是菱形,,的中点.

(1)求证:
(2)求证:平面平面.

  • 题型:未知
  • 难度:未知

(本小题满分10分)
如图,在四棱锥中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD.

  • 题型:未知
  • 难度:未知

(本小题满分9分)平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC.
(Ⅰ)求证:       (Ⅱ)求二面角B-AC-D平面角的大小;
(Ⅲ)求四面体ABCD外接球的体积.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题