本小题满分12分)
已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.
(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.
(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,
(Ⅰ)求证:平面;
(Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为。
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面;
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.
试题篮
()