优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,矩形中,为边的中点,将沿直线翻折成,若为线段的中点,则在翻折过程中,下面四个命题中不正确的是(   )

A.是定值
B.点在某个球面上运动
C.存在某个位置,使
D.存在某位置,使平面
  • 题型:未知
  • 难度:未知

三棱锥中,,若是该三棱锥外部(不含表面)的一点,则下列命题正确的是(   )
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.

A.①③ B.①④ C.①③④ D.①②④
  • 题型:未知
  • 难度:未知

是三个互不重合的平面,是直线,给出下列命题:①,则;②若,则;③若内的射影互相垂直,则;④若,则,其中正确命题的个数为( )

A.0 B.1 C.2 D.3
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.

(1)求四棱锥F﹣ABCD的体积VF﹣ABCD
(2)求证:平面AFC⊥平面CBF;
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.

  • 题型:未知
  • 难度:未知

如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.

(1)求证:B1C//平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.

  • 题型:未知
  • 难度:未知

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将沿DE折起到的位置,使二面角为直二面角,连结(如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为60°?若存在,求出PB的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 题型:未知
  • 难度:未知

是两条不同的直线,是两个不同的平面,则下列命题中正确的是(   )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为矩形,平面的中点.

(1)证明:平面
(2)设,三棱锥的体积,求到平面的距离.

  • 题型:未知
  • 难度:未知

已知表示两条不同直线,表示平面.下列说法正确的是( )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面

(1)若的中点.证明:平面
(2)若二面角的余弦值为,试求的值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为菱形且中点.

(1)若,求证:平面平面
(2)若,且四棱锥的体积为1,试求二面角的大小.

  • 题型:未知
  • 难度:未知

如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图所示,为正方体,给出以下五个结论:

平面
平面
与底面所成角的正切值是
④二面角的正切值是
⑤过点且与异面直线均成角的直线有2条.
其中,所有正确结论的序号为_______.

  • 题型:未知
  • 难度:未知

是直线上的两点,,且直线与直线的角,则两点间的距离是_______.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题