优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

已知直三棱柱中,分别为的中点,,点在线段上,且

(1)证:
(2)若为线段上一点,试确定在线段上的位置,使得平面

  • 题型:未知
  • 难度:未知

如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,分别是棱上的点(点不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱中,,点的中点.

(1)求证:
(2)求证:平面
(3)求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

对于空间中两条不相交的直线,必存在平面,使得(  )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 题型:未知
  • 难度:未知

已知是两条不同的直线,是一个平面,则下列命题正确的是( )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图,三角形是边长为4的正三角形,底面,点的中点,点上,且

(1)证明:平面平面
(2)求直线和平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为__________.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为菱形,其中

(1)求证:
(2)若平面平面,求二面角的正切值.

  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 题型:未知
  • 难度:未知

是两条不同的直线,是两个不同的平面,下列命题正确的是(  )

A.
B.β且,则
C.
D.,则
  • 题型:未知
  • 难度:未知

已知正四棱柱中,

(Ⅰ)求证:
(Ⅱ)求钝二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,
请说明理由.

  • 题型:未知
  • 难度:未知

若曲线 的一条切线与直线x+4y-8=0垂直,则的方程为(  )

A.4x-y-3=0 B.x+4y-5=0
C.4x-y+3=0 D.x+4y+3=0
  • 题型:未知
  • 难度:未知

如图在三棱锥S

(1)证明
(2)求侧面与底面所成二面角的大小;
(3)求点C到平面SAB的距离.

  • 题型:未知
  • 难度:未知

为不同的平面,为不同的直线,则的一个充分条件是(    )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题