某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.
(Ⅰ)求图中的值;
(Ⅱ)根据直方图,估计这100名学生语文成绩的平均分;
(Ⅲ)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.
分数段 |
||||
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
分组(日销售量) |
频率(甲种酸奶) |
[0,10] |
0.10 |
(10,20] |
0.20 |
(20,30] |
0.30 |
(30,40] |
0.25 |
(40,50] |
0.15 |
(Ⅰ)写出频率分布直方图中的a的值,并作出甲种酸奶日销售量的频率分布直方图;
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较与的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
某地区为了了解某地区高中生的身体发育情况,对某一中学的随机抽取的50名学生的体重进行了测量,结果如下:(单位:kg)
42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,
42,39,51,52,62,47,59,46,45,,67,53,49,65,47,54,63,58,43,46,58.
分组 |
频数 |
频率 |
频率/组距 |
[27,32) |
|
0.06 |
|
[32,37) |
|
0.06 |
|
[37,42) |
9 |
|
|
[42,47) |
|
|
0.064 |
[47,52) |
7 |
|
|
[52,57) |
5 |
|
|
[57,62) |
4 |
|
|
[62,67) |
|
0.06 |
|
(1)若以组距为5,完成下面样本频率分布表:
(2)根据(1)中的频率分布表,画出频率分布直方图;
(3)若本地区学生总人数为3000人,试根据抽样比例,估计本地区学生体重在区间[37,57]内所占的人数约为多少人?
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 |
[75,85) |
[85,95) |
[95,105) |
[105,115) |
[115,125) |
频数 |
4 |
16 |
40 |
32 |
8 |
(1)在答题卡上作出这些数据的频率分布直方图;(用阴影涂黑)
(2)估计这种产品质量指标值的平均数及中位数;
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的75%”的规定?
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
教育部、国家体育总局和共青团中央号召全国各级各类学校要广泛,深入地开展全国亿万大中学生阳光体育运动,为此,某校学生会对2014-2015学年高二年级2014年9月与10月这两个月内参加体育运动的情况进行统计,随机抽取了100名学生作为样本,得到这100名学生在该月参加体育运动总时间的小时数,根据此数据作出了如下的频率分布表和 频率分布直方图:
(1)求的值,并补全频率分布直方图;
(2)根据上述数据和直方图,试估计运动时间在[25,55]小时的学生体育运动的平均时间;
频率分布表
分组 |
运动时间(小时) |
频数 |
频率 |
1 |
[25,30) |
20 |
0.2 |
2 |
[30,35) |
a |
p |
3 |
[35,40) |
20 |
0.2 |
4 |
[40,45) |
15 |
0.15 |
5 |
[45,50) |
10 |
0.10 |
6 |
[50,55] |
5 |
0.05 |
合计 |
|
100 |
1.00 |
某校高二某班的一次数学测试成绩(满分为分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中间的矩形的高;
(3)若要从分数在 之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的a,b的值;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
2015年五一节”期间,高速公路车辆“较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:
(1)求a的值,并说明交警部门采用的是什么抽样方法?
(2)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率;
(3)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1)。
我国政府对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米) |
空气质量等级 |
|
一级 |
二级 |
|
超标 |
某市环保局从一年365天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所
示(十位为茎,个位为叶).
树茎 |
树叶 |
2 |
8 2 |
3 |
8 2 1 |
4 |
4 5 |
6 |
3 8 |
7 |
7 |
(1)求这10天数据的中位数;
(2)从这10天数据中任取4天的数据,记为空气质量达到一级的天数,求的分布列和期望;
(3)以这10天的数据来估计这一年365天的空气质量情况,并假定每天之间的空气质量相互不影响.记
为这一年中空气质量达到一级的天数,求的平均值.
某校联合社团有高一学生126人,高二学生105人,高三学生42人,现
用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息.
(1)完成下列统计表:
(2)估计联合社团的学生中“赞同”的人数;
(3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.
(本小题满分12分)为了解惠州市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10。规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体
的平均数之差的绝对值不超过的概率.
为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.
(1)求第四小组的频率和参加这次测试的学生人数;
(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.
试题篮
()