已知椭圆的对称点落在直线
)上,且椭圆C的离心率为
(1)求椭圆C的方程;
(2)设A(3,0),M、N是椭圆C上关于x轴对称的任意两点,连结AN交椭圆于另一点E,求证直线ME与x轴相交于定点.
)
已知、
是椭圆
的左、右焦点,
为坐标原点,点
在椭圆上,线段
与
轴的交点
满足
;
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点作直线l交椭圆于A、B两点,交y轴于M点,若
,求
的值.
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中
,且
,
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:
为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。
(1)求圆C的极坐标方程;
(2)若点在直线OQ上运动,且满足
,求动点P的轨迹方程。
抛物线的准线的方程为
,该抛物线上的每个点到准线
的距离都与到定点
的距离相等,圆
是以
为圆心,同时与直线
和
相切的圆,
(Ⅰ)求定点的坐标;
(Ⅱ)是否存在一条直线同时满足下列条件:
①分别与直线
和
交于
、
两点,且
中点为
;
②被圆
截得的弦长为2.
将圆上的点的横坐标保持不变,纵坐标变为原来的
倍,得到曲线
.设直线
与曲线
相交于
、
两点,且
,其中
是曲线
与
轴正半轴的交点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:直线
的纵截距为定值.
已知过定点
,圆心
在抛物线
:
上运动,
为圆
在
轴上所截得的弦.
⑴当点运动时,
是否有变化?并证明你的结论;
⑵当是
与
的等差中项时,
试判断抛物线的准线与圆
的位置关系,
并说明理由。
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
(本小题满分12分)
已知点,点
在
轴上,点
在
轴的正半轴上,点
在直线
上,且
满足.
(Ⅰ)当点在
轴上移动时,求点
的轨迹
的方程;
(Ⅱ)设、
为轨迹
上两点,且
>1,
>0,
,求实数
,
使,且
.
试题篮
()