优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

已知椭圆C:=1(ab>0)的左.右焦点为F1F2,离心率为e. 直线ly=exax轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.

来源:圆锥曲线方程
  • 题型:未知
  • 难度:未知

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知点,点轴上,点轴的正半轴上,点在直线上,且
满足.
(Ⅰ)当点轴上移动时,求点的轨迹的方程;
(Ⅱ)设为轨迹上两点,且>1, >0,,求实数
使,且.

来源:2009年高考桂林市、崇左市、贺州市、防城港市联合调研考试文22
  • 题型:未知
  • 难度:未知

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设轴交于点,不同的两点上,且满足的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)



20090327

 

已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.

  (1)求p的值;
(2)过该抛物线的焦点作两条互相垂直的直线l1l2,与抛物线相交得两条弦,两条弦
的中点分别为G,H.求|GH|的最小值.

来源:河南省普通高中2009年高中毕业班教学质量调研考试(文)22
  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点PBC边上移动,线段OP的垂直平分线交y轴于点E,点M满足

(Ⅰ)求点M的轨迹方程;
(Ⅱ)已知点F(0,),过点F的直线l交点M的轨迹于Q、R两点,且求实数的取值范围.

来源:湖南省长沙一中20082009学年高三第八次月考数学(文科)21.
  • 题型:未知
  • 难度:未知

已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为,椭圆的左右焦点分别为F1F2
(Ⅰ)求椭圆方程;
(Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值;
(Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由。

来源:2009–2010年度广东六校联考数学(理)
  • 题型:未知
  • 难度:未知

(本题满分13分) 已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过 三点. (1)求椭圆的方程:(2)若点D为椭圆上不同于的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;(3)若直线与椭圆交于两点,证明直线与直线的交点在定直线上并求该直线的方程.

  • 题型:未知
  • 难度:未知

如图,,双曲线M是以B、C为焦点且过A点.(Ⅰ)建立适当的坐标系,求双曲线M的方程;
(Ⅱ)设过点E(1,0)的直线l分别与双曲线M的左、右支交于
F、G两点,直线l的斜率为k,求k的取值范围.;
(Ⅲ)对于(II)中的直线l,是否存在k使|OF|=|OG|
若有求出k的值,若没有说明理由.(O为原点)

来源:重庆渝东片区高2010级第一次诊断性检测理科数学模拟试题一
  • 题型:未知
  • 难度:未知




A                                                  B
C                                          D

  • 题型:未知
  • 难度:未知


  • 题型:未知
  • 难度:未知





  • 题型:未知
  • 难度:未知





  • 题型:未知
  • 难度:未知

如图,给出定点A(a,0)  (a>0,a≠1)和直线lx=-1,B是直线l上的动点,∠BOA的角平分线交AB于点C,求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.

  • 题型:未知
  • 难度:未知

已知曲线x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲线C.
(1)求曲线C的方程;
(2)过点D(0,2)的直线与曲线C相交于不同的两点MN,且MDN之间,设,求实数λ的取值范围.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题