优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

(本小题满分12分)
已知点和直线,作垂足为Q,且
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点C的直线m与点P的轨迹交于两点,若的面积为,求直线的方程.

来源:
  • 题型:未知
  • 难度:未知

(本小题满分13分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直
线的距离为定值,并求弦长度的最小值.

  • 题型:未知
  • 难度:未知

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

  • 题型:未知
  • 难度:未知

(本小题满分14分)
椭圆的离心率为,长轴端点与短轴端点间的距离为
(I)求椭圆的方程;
(II)设过点的直线与椭圆交于两点,为坐标原点,若
为直角三角形,求直线的斜率。

来源:
  • 题型:未知
  • 难度:未知

如图,已知 A P O 的切线, P 为切点, A C 是⊙O的割线,与 O 交于 B C 两点,圆心 O P A C 的内部,点 M B C 的中点.

image.png

(Ⅰ)证明 A , P , O , M 四点共圆;
(Ⅱ)求 O A M A P M 的大小.

来源:2007年普通高等学校招生全国统一考试理科数学卷(海南)
  • 题型:未知
  • 难度:未知

(本小题满分13分)
过圆上一点A(4,6)作圆的一条动弦AB,点P为弦AB的中点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P关于点D(9,0)的对称点为E,O为坐标原点,将线段OP绕原点O依逆时针方向旋转90°后,所得线段为OF,求|EF|的取值范围.

  • 题型:未知
  • 难度:未知

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其左、右焦点分别为,且成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为,求证:
(3)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分13分)
已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l对称,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);
(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

已知两点,点为坐标平面内的动点,且满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点的直线斜率为,且与曲线相交于点,若两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.

  • 题型:未知
  • 难度:未知

如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l交于A、B两点,过A、B分别作l的垂线与圆

C过F的切线交于点P和点Q,则P、Q必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:
“若过抛物线焦点F的直线与抛物线交于P、Q两点,
则以PQ为直径的圆一定与抛物线的准线l相切”请
问:此命题是否正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并
证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为评分依据)

  • 题型:未知
  • 难度:未知

已知平面上两定点C1,0),D(1,0)和一定直线为该平面上一动点,作,垂足为Q,且
(1)问点在什么曲线上,并求出曲线的轨迹方程M
(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.

  • 题型:未知
  • 难度:未知

O 1 O 2 的极坐标方程分别为 ρ = 4 cos θ , ρ = - 4 sin θ .
(Ⅰ)把 O 1 O 2 的极坐标方程化为直角坐标方程;
(Ⅱ)求经过 O 1 , O 2 交点的直线的直角坐标方程.

来源:2007年普通高等学校招生全国统一考试理科数学卷(海南)
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.

来源:福建2011届高三数学四校联考文科数学试卷
  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题