点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
已知动圆过定点P(1,0),且与定直线相切,点C在上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点,
①求线段AB的长;
②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的方程;
(2)设直线与圆相交于两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦?
存在,求出实数的值;若不存在,请说明理由.
已知圆和直线,直线,都经过圆C外
定点A(1,0).
(Ⅰ)若直线与圆C相切,求直线的方程;
(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,
求证:为定值.
如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为.
(Ⅰ)求线段中点的轨迹的方程;
(Ⅱ)是曲线上的动点, 到轴的距离之和为,
设为到轴的距离之积.问:是否存在最大的常数,
使恒成立?若存在,求出这个的值;若不存在,请说明理由.
已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点。
(1)求的取值范围;
求四边形面积的最小值。
(本小题满分14分)
已知点、,()是曲线C上的两点,点、关于轴对称,直线、分别交轴于点和点,
(Ⅰ)用、、、分别表示和;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点、、的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、N、P的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究与经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).
(本题满分14分)设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.
(本小题满分12分)
设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知.
(1) 求椭圆C的标准方程;
(2) 若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN.
试题篮
()