优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________ 

来源:圆锥曲线方程
  • 题型:未知
  • 难度:未知

点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.

  • 题型:未知
  • 难度:未知

已知动圆过定点P(1,0),且与定直线相切,点C上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于AB两点,
①求线段AB的长;
②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;

来源:解析几何
  • 题型:未知
  • 难度:未知

已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的方程;
(2)设直线与圆相交于两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦
存在,求出实数的值;若不存在,请说明理由.

来源:直线与圆
  • 题型:未知
  • 难度:未知

已知以点为圆心的圆与轴交于点,与轴交于点,其中为原点。
(Ⅰ)求的面积;
(Ⅱ)设直线与圆交于点,若,求圆的方程。

  • 题型:未知
  • 难度:未知

已知圆C经过两点,且在y轴上截得的线段长为,半径小于5。
(Ⅰ)求圆C的方程;
(Ⅱ)若直线,且与圆C交于点,求直线的方程。

  • 题型:未知
  • 难度:未知

已知圆和直线,直线都经过圆C外
定点A(1,0).
(Ⅰ)若直线与圆C相切,求直线的方程;
(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,
求证:为定值.

  • 题型:未知
  • 难度:未知

如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点轴的正半轴上运动,的面积为.

(Ⅰ)求线段中点的轨迹的方程;
(Ⅱ)是曲线上的动点, 轴的距离之和为,
轴的距离之积.问:是否存在最大的常数,
使恒成立?若存在,求出这个的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.

  • 题型:未知
  • 难度:未知

已知椭圆与双曲线有相同的焦点,且椭圆过点
(1)求椭圆方程; 
(2)直线过点交椭圆于两点,且,求直线的方程。

  • 题型:未知
  • 难度:未知

已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点。
(1)求的取值范围;
求四边形面积的最小值。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知点,()是曲线C上的两点,点关于轴对称,直线分别交轴于点和点
(Ⅰ)用分别表示;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、NP的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).

  • 题型:未知
  • 难度:未知

(本题满分14分)设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN

  • 题型:未知
  • 难度:未知

已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程;                  (2)求m的取值范围.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题