(本题满分15分)圆C过点A(2,0)及点B(,),且与直线l:y=相切
(1)求圆C的方程;
(2)过点P(2,1)作圆C的切线,切点为M,N,求|MN|;
(3)点Q为圆C上第二象限内一点,且∠BOQ=,求Q点横坐标.
(本小题满分12分)已知,,若动点满足,点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)试确定的取值范围,使得对于直线:,曲线上总有不同的两点关于直线对称.
已知曲线的极坐标方程为,直线的参数方程是: .
(Ⅰ)求曲线的直角坐标方程,直线的普通方程;
(Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线曲线,求曲线上的点到直线距离的最小值.
( 10分)已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.
(I)若动点满足(其中为坐标原点),求点的轨迹方程;
(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;
若不存在,请说明理由.
(本小题满分12分)双曲线的离心率为,右准线为。
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
已知是两条不同的直线,是一个平面,有下列四个命题:
① 若,则; ② 若,则;
③ 若,则;④ 若,则.
其中真命题的序号有 .(请将真命题的序号都填上)
(本小题满分13分)双曲线的中心是原点O,它的虚轴长为,相应于焦点F(c,0)(c>0)的准线与x轴交于点A,且|OF|=3|OA|,过点F的直线与双曲线交于P、Q两点.
(1)求双曲线的方程;
(2)若=0,求直线PQ的方程.
已知椭圆E:(0)过点(0,),其左焦点与点P(1,)的连线与圆相切。
(1)求椭圆E的方程;
(2)设Q为椭圆E上的一个动点,试判断以为直径的圆与圆的位置关系,并证明
已知点为圆周的动点,过点作轴,垂足为,设线段的中点为,记点的轨迹方程为,点
(1)求动点的轨迹方程;
(2)若斜率为的另一个交点为,求面积的最大值及此时直线的方程;
(3)是否存在方向向量的直线交与两个不同的点,且有?若存在,求出的取值范围;若不存在,说明理由。
试题篮
()