(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.
(1) 当t变化时,求点P的轨迹方程;
(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,
求直线BC的方程.
将圆上的点的横坐标保持不变,纵坐标变为原来的倍,得到曲线.设直线与曲线相交于、两点,且,其中是曲线与轴正半轴的交点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:直线的纵截距为定值.
如图,椭圆
的一个焦点是
,
为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点
的直线
交椭圆于
、
两点,若直线
绕点
任意转动,值有
,求
的取值范围。
如图,已知
的两条角平分线
和
相交于
,
,
在
上,且
.
(Ⅰ)证明:
、
、
、
四点共圆;
(Ⅱ)证明:
平分
.
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足.
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线于两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线于两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.
已知平面内两定点,动点满足条件:,设点的轨迹是曲线为坐标原点。
(I)求曲线的方程;
(II)若直线与曲线相交于两不同点,求的取值范围;
(III)(文科做)设两点分别在直线上,若,记 分别为两点的横坐标,求的最小值。
(理科做)设两点分别在直线上,若,求面积的最大值。
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
设抛物线的准线与轴交于点,焦点为;椭圆以 为焦点,离心率。
(I)当时,①求椭圆的标准方程;②若直线与抛物线交于两点,且线段 恰好被点平分,设直线与椭圆交于两点,求线段的长;
(II)(仅理科做)设抛物线与椭圆的一个交点为,是否存在实数,使得的边长是连续的自然数?若存在,求出这样的实数的值;若不存在,请说明理由。
试题篮
()