如下图所示,在直角坐标系中,射线
在第一象限,且与
轴的正半轴成定角
,动点
在射线
上运动,动点
在
轴的正半轴上运动,
的面积为
.
(Ⅰ)求线段中点
的轨迹
的方程;
(Ⅱ)是曲线
上的动点,
到
轴的距离之和为
,
设为
到
轴的距离之积.问:是否存在最大的常数
,
使恒成立?若存在,求出这个
的值;若不存在,请说明理由.
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中
,且
,
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:
为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。
(1)求圆C的极坐标方程;
(2)若点在直线OQ上运动,且满足
,求动点P的轨迹方程。
试题篮
()