优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展
高中数学

离散型随机变量的分布列为:



1





则X的期望___________.

  • 题型:未知
  • 难度:未知

为了响应学校“学科文化节”活动,数学组举办了一场数学知识比赛,共分为甲、乙两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的学生中,每组各任选2个学生,作为数学组的活动代言人.
(1)求选出的4个学生中恰有1个女生的概率;(2)设为选出的4个学生中女生的人数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

样本中共有5个个体,其值分别为.若该样本的平均值为1,则样本方差为

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知某离散型随机变量服从的分布列如图,则随机变量的方差等于    (    )







A.            B.           C.            D.

  • 题型:未知
  • 难度:未知

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.

分数(分数段)
频数(人数)
频率
[60,70)


[70,80)


[80,90)


 [90,100)


合  计


(Ⅰ)求出上表中的的值;
(Ⅱ)按规定,预赛成绩不低于分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一·二班在决赛中进入前三名的人数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

随机变量X的分布列如下:

ξ
-1
0
1
P
a
b
c

其中a,b,c成等差数列,若,则的值是           

  • 题型:未知
  • 难度:未知

某食品加工厂甲,乙两个车间包装小食品,在自动包装传送带上每隔30分钟抽取一袋食品,称其重量并将数据记录如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品厂采用的是什么抽样方法(不必说明理由)?
(2)根据数据估计这两个车间所包装产品每袋的平均质量;
(3)分析哪个车间的技术水平更好些?
附:

  • 题型:未知
  • 难度:未知

篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知某运动员罚球命中的概率为0.7,则他罚球2次(每次罚球结果互不影响)的得分的数学期望是       

  • 题型:未知
  • 难度:未知

设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以表示取出次品的个数,则的期望值=    

  • 题型:未知
  • 难度:未知

某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。
(1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望;
(2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。

  • 题型:未知
  • 难度:未知

某人上楼梯,每步上一阶的概率为,每步上二阶的概率为,设该人从台阶下的平台开始出发,到达第阶的概率为.
(1)求;;
(2)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.

  • 题型:未知
  • 难度:未知

一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量为取出3球中白球的个数,已知
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.

  • 题型:未知
  • 难度:未知

一厂家向用户提供的一箱产品共10件,其中有1件次品. 用户先对产品进行随机抽检以决定是否接受. 抽检规则如下:至多抽检3次,每次抽检一件产品(抽检后不放回),只要检验到次品就停止继续抽检,并拒收这箱产品;若3次都没有检验到次品,则接受这箱产品,按上述规则,该用户抽检次数的数学期望是___________.

  • 题型:未知
  • 难度:未知

某商场共五层,从五层下到四层有3个出口,从三层下到二层有4个出口,从二层下到一层有4个出口,从一层走出商场有6个出口。安全部门在每层安排了一名警员值班,负责该层的安保工作。假设每名警员到该层各出口处的时间相等,某罪犯在五楼犯案后,欲逃出商场,各警员同时接到指令,选择一个出口进行围堵。逃犯在每层选择出口是等可能的。已知他被三楼警员抓获的概率为
(Ⅰ)问四层下到三层有几个出口?
(Ⅱ)天网恢恢,疏而不漏,犯罪嫌疑人最终落入法网。设抓到逃犯时,他已下了层楼,写出的分布列,并求

  • 题型:未知
  • 难度:未知

(本小题满分12分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为,(已知甲回答每个问题的正确率相同,并且相互之间没有影响。)(I)求甲选手回答一个问题的正确率;(Ⅱ)求选手甲可进入决赛的概率;(Ⅲ)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望。

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题