学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在一次游戏中,①摸出3个白球的概率,②获奖的概率;
(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
马老师从课本上抄录一个随机变量X的概率分布律如下表
x |
1 |
2 |
3 |
P(ε=x) |
? |
! |
? |
请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.
若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,V(X)=,则x1+x2的值为________.
随机变量X的分布列如下:
X |
-1 |
0 |
1 |
P |
a |
b |
c |
其中a,b,c成等差数列,若E(X)=,则V(X)的值为________.
设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.
已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.
X |
-1 |
0 |
1 |
2 |
P |
a |
b |
c |
一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,射击停止后尚余子弹的数目X的数学期望值为________.
某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X表示选出的志愿者中女生的人数,则数学期望E(X)=________(结果用最简分数表示).
抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:
城市 |
空气质量指数(AQI) |
||||
第1天 |
第2天 |
第3天 |
第4天 |
第5天 |
|
甲 |
109 |
111 |
132 |
118 |
110 |
乙 |
110 |
111 |
115 |
132 |
112 |
则空气质量指数(AQI)较为稳定(方差较小)的城市为 (填甲或乙).
某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.
若随机变量ξ的分布列为:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,则D(ξ)的最小值等于 .
若随机变量X~B(100,p),X的数学期望E(X)=24,则p的值是( )
A. | B. | C. | D. |
随机变量ξ的分布列如下:
ξ |
-1 |
0 |
1 |
P |
a |
b |
c |
其中a,b,c成等差数列,若E(ξ)=,则D(ξ)的值是( )
(A) (B) (C) (D)
试题篮
()