某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?
(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得分,答错不答都得分,已知甲队人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.
(Ⅰ)求随机变量的分布列及其数学期望;
(Ⅱ)求在甲队和乙队得分之和为的条件下,甲队比乙队得分高的概率.
从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率.
(Ⅰ)求从该批产品中任取1件是二等品的概率;
(Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.
(本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
降水量X |
X<300 |
300≤X<700 |
700≤X<900 |
X≥900 |
工期延 |
|
|
|
|
误天数Y |
0 |
2 |
6 |
10 |
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3 ,0.7 ,0.9.求:
(Ⅰ)工期延误天数Y的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.
某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;
(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
(本小题满分16分)袋中有大小相同的三个球,编号分别为1,2,3.从袋中每次取出一个球,若取到的球的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到球的编号为奇数,则取球停止,取球停止后用X表示“所有被取球的编号之和”。
(1)求X的概率分布;
(2)求X的数学期望及方差.
在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样。现有一大批产品,采用随机抽样的方法一件一件抽取进行检验。若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格。假定该批产品的不合格率为0.1,设检查产品的件数为X。
(Ⅰ)求随机变量X的分布列和数学期望;
(Ⅱ)通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率
(本小题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.
(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.
(本小题满分12分) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望
(本小题满分10分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止。若摸出白球,则记2分,若摸出黑球,则记1分。每个球在每一次被取出的机会是等可能的。用x表示甲,乙最终得分差的绝对值.
(1)求袋中原有白球的个数;
(2)求随机变量x的概率分布列及期望Ex.
某市
两所中学的学生组队参加辩论赛,
中学推荐3名男生,2名女生,
中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队
(1)求
中学至少有1名学生入选代表队的概率.
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设
表示参赛的男生人数,求
得分布列和数学期望.
已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;
(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求的分布列和均值(数学期望).
(本小题满分12 分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.
(本小题满分12分)4月10日,2015《中国汉字听写大会》全国巡回赛浙江赛区在杭州宣布正式启动,并拉开第三届“汉听大会”全国海选的帷幕。某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示.
(Ⅰ)求频率分布直方图中的值,试估计全市学生参加汉字听写考试的平均成绩;
(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上(含80分)的概率;
(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为,求的分布列及数学期望.
(注:频率可以视为相应的概率)
试题篮
()