优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展 / 解答题
高中数学

(本小题满分12分)近年来空气污染是一个生活中重要的话题, PM2.5就是其中一个指标。PM2.5指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值在35微克/立方米以下空气质量为一级:在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.淮北相山区2014年12月1日至I0日每天的PM2.5监测数据如茎叶图所示.

(1)期间的某天小刘来此地旅游,求当天PM2.5日均监测数据未超标的概率;
(2)陶先生在此期间也有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(3)从所给10天的数据中任意抽取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列及期望.

  • 题型:未知
  • 难度:未知

某区要进行中学生篮球对抗赛,为争夺最后一个小组赛名额,甲、乙、丙三支篮球队要进行比赛,根据规则:每两支队伍之间都要比赛一场;每场比赛胜者得分,负者得分,没有平局,获得第一名的将夺得这个参赛名额.已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为
(Ⅰ)求甲队分别战胜乙队和丙队的概率
(Ⅱ)设在该次比赛中,甲队得分为,求的分布列及期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)某旅行社组织了一个有36名游客的旅游团到安徽风景名胜地旅游,其中是省外游客,其余是省内游客,在省外游客中有玩过黄山,在省内游客中有玩过黄山。
(1)在该团中随机采访3名游客,求恰有1名 省外游客玩过黄山且省内游客玩过黄山少于2人的概率;
(2)在该团的省内游客中随机采访3名游客,设其中省内游客玩过黄山的人数为随机变量,求的分布列及数学期望

  • 题型:未知
  • 难度:未知

(本小题满分12分)甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为,乙与丙击中目标的概率分别为,每人是否击中目标是相互独立的.记目标被击中的次数为,且的分布列如下表:

(Ⅰ)求的值;
(Ⅱ)求的数学期望.

  • 题型:未知
  • 难度:未知

某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(1)求选手甲进入复赛的概率;
(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6

(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下:
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

  • 题型:未知
  • 难度:未知

某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.

  • 题型:未知
  • 难度:未知

A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为

X1
5%
10%
P
0.8
0.2

 

X2
2%
8%
12%
P
0.2
0.5
0.3

(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

  • 题型:未知
  • 难度:未知

甲、乙两名射手各打了10发子弹,其中甲击中环数与次数如下表

环数
5
6
7
8
9
10
次数
1
1
1
1
2
4

乙射击的概率分布列如表

环数
7
8
9
10
概率
0.2
0.3
p
0.1

(1)若甲,乙两人各打一枪,求共击中18环的概率及p的值;
(2)比较甲,乙两人射击水平的优劣.

  • 题型:未知
  • 难度:未知

为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率.
(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入“心理社”的概率
(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.

 
优秀
非优秀
总计
课改班
 
50
 
非课改班
20
 
110
合计
 
 
210

 
(1)请完成上面的2´2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改
有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4
人中的优秀人数为x,若每次抽取的结果是相互独立的,求x的分布列及数学期望Ex.

  • 题型:未知
  • 难度:未知

甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.

  • 题型:未知
  • 难度:未知

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费X(随机变量)的分布列;
(2)试比较哪一种方案好.

  • 题型:未知
  • 难度:未知

张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;
(2)求EX.

  • 题型:未知
  • 难度:未知

第16届亚运会于2010年11月12日在广州举办,运动会期间来自广州大学和中山大学的共计6名大学生志愿者将被随机平均分配到跳水、篮球、体操这三个比赛场馆服务,且跳水场馆至少有一名广州大学志愿者的概率是.
(1)求6名志愿者中来自广州大学、中山大学的各有几人?
(2)设随机变量X为在体操比赛场馆服务的广州大学志愿者的人数,求X的分布列及均值.

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题