(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.
假设每名队员每次射击相互独立.
(Ⅰ)求上图中的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
(本小题满分13分)国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:
空气质量等级 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
AQI值范围 |
[0,50) |
[50,100) |
[100,150) |
[150,200) |
[200,300) |
300及以上 |
下表是由天气网获得的全国东西部各6个城市2015年3月某时刻实时监测到的数据:
西部城市 |
AQI数值 |
东部城市 |
AQI数值 |
西安 |
108 |
北京 |
104 |
西宁 |
92 |
金门 |
42 |
克拉玛依 |
37 |
上海 |
x |
鄂尔多斯 |
56 |
苏州 |
114 |
巴彦淖尔 |
61 |
天津 |
105 |
库尔勒 |
456 |
石家庄 |
93 |
AQI平均值:135 |
AQI平均值:90 |
(Ⅰ)求x的值,并根据上表中的统计数据,判断东、西部城市AQI数值的方差的大小关系(只需写出结果);
(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为,求的分布列和数学期望.
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评
审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为
,复审的稿件能通过评审的概率为
.各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率;
(II)记
表示投到该杂志的4篇稿件中被录用的篇数,求
的分布列及期望.
(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.
求:(I)打满3局比赛还未停止的概率;
(II)比赛停止时已打局数的分别列与期望E.
第16届亚运会将于2010年11月12日至27日在中国广州进行,在安全保障方面,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选。假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为。这三项测试能否通过相互之间没有影响。试卷
(1)求A能够入选的概率;试卷
(2)规定:按人选人数得训练经费(每人选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费的分布列与数学期望。
某次有奖竞猜活动设有、两组相互独立的问题,答对问题可赢得奖金3000元,答对问题可赢得奖金6000元.规定答题顺序可任选,但只有一个问题答对后才能解答下一个问题,否则中止答题,假设你答对问题、的概率依次为.
(Ⅰ)若你按先后的次序答题,写出你获得奖金的数额的分布列及期望;
(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.
(本题12分)某种家电器每台的销售利润与该电器无故障使用时间T(单位:年)有关,若T≤1,则销售利润为0元,若1<T≤3,则销售利润为100元,若T>3,则销售利润为200元,设每台该种电台无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率为为P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的两个根,且P2=P3,
(1)求P1,P2,P3的值;
(2)记表示销售两台这种家用电器的销售利润总和,求的分布列;
(3)求销售两台这种家用电器的销售利润总和的平均值。
某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.
|
优秀 |
非优秀 |
总计 |
课改班 |
|
50 |
|
非课改班 |
20 |
|
110 |
合计 |
|
|
210 |
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
(本小题满分12分)
某班级甲组有名学生,其中有名女生;乙组有名学生,其中有名女生.
(Ⅰ)若从两组中各抽取两人进行心理健康测试,求每组至少抽到一名女生的概率;
(Ⅱ)现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽
取名学生进行心理健康测试.
()求从甲、乙两组各抽取的人数;
()记表示抽取的名学生中男生人数,求的分布列及数学期望.
(本小题10分)口袋中有个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求:
(1)n的值;
(2)X的概率分布与数学期望.
已知正方形的边长为,、、、分别是边、、、的中点.
(1)在正方形内部随机取一点,求满足的概率;
(2)从、、、、、、、这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求随机变量的分布列与数学期望.
(本小题满分12分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及,的值.
为了更好地服务于2010年世博会,上海某酒店随机地对最近入住的名旅客进行服务质量问卷调查,把旅客对住宿的舒适满意度与价格满意度分为五个等级:
“1级(很不满意)”、“2级(不满意)”、“3级(一般)”、“4级(满意)”、“5级(很满意)”其结果如表所示,若在这个样本中,任选一人,其舒适度为,价格满意度.
(1)根据样本中的数据求P(y=5)及P(x≥3且y=3)的值;
(2)若的期望值为,求a、b、c的值;
(3)求该人在对价格满意(满意度不低于3)的条件下对舒适度也满意的概率.
试题篮
()