已知函数,若|f(x)|≥ax,则a的取值范围是( )
A.(-∞,0] | B.(-∞,1] |
C.[-2,1] | D.[-2,0] |
设max{f(x),g(x)}=,若函数n(x)=x2+px+q(p,q∈R)的图象经过不同的两点(
,0)、(
,0),且存在整数n使得n<
<
<n+1成立,则( )
A.max{n(n),n(n+1)}>1 | B.max{n(n),n(n+1)}<1 |
C.max{n(n),n(n+1)}>![]() |
D.max{n(n),n(n+1)}> ![]() |
二次函数y=ax2+bx+c的图象如图2所示,则下列结论①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ x=0为方程ax2+bx+c=-2的一个解,其中正确的有 ( )
A.2个 | B.3个 | C.4个 | D.5个 |
已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,则( )
A.∀x∈(0,1),都有f(x)>0 |
B.∀x∈(0,1),都有f(x)<0 |
C.∃x0∈(0,1),使得f(x0)=0 |
D.∃x0∈(0,1),使得f(x0)>0 |
试题篮
()