已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( )
A.a2-2a-16 |
B.a2+2a-16 |
C.-16 |
D.16 |
若在区间(-∞,1]上递减,则a的取值范围为( )
A.[1,2) |
B.[1,2] |
C.[1,+∞) |
D.[2,+∞) |
已知直线y=mx与函数的图象恰好有3个不同的公共点,则实数m的取值范围是( )
A.(,4) |
B.(,+∞) |
C.(,5) |
D.(,) |
已知函数.设, (max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记的最小值为A,的最大值为B,则( )
A.16 |
B. |
C. |
D. |
对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是( )
A.(1,3) | B.(-∞,1)∪(3,+∞) |
C.(1,2) | D.(3,+∞) |
试题篮
()