优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 选择题
高中数学

观察式子:,则可归纳出式子为(  )

A.
B.
C.
D.
  • 题型:未知
  • 难度:未知

利用数学归纳法证明“1+a+a2+…+an+1 =, (a≠1,n∈N)”时,在验证n=1成立时,左边应该是  (   )

A.1 B.1+a C.1+a+a2 D.1+a+a2+a3
  • 题型:未知
  • 难度:未知

在数列{an}中,an=1-+…+,则ak+1等于(  )

A.ak B.ak
C.ak D.ak
  • 题型:未知
  • 难度:未知

用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为(  )

A.2k+1 B.2(2k+1) C. D.
  • 题型:未知
  • 难度:未知

用数学归纳法证明“时,从 “”时,左边应增添的式子是(    ).

A. B. C. D.
  • 题型:未知
  • 难度:未知

是定义在正整数集上的函数且满足当成立时,总可以推出成立,则下列命题总成立的是( )

A.若成立
B.若成立,则成立
C.若成立,则当时,均有成立
D.若成立,则当时,均有成立
  • 题型:未知
  • 难度:未知

用数学归纳法证明不等式,且时,第一步应证明下述哪个不等式成立(    )

A. B. C. D.
  • 题型:未知
  • 难度:未知

用数学归纳法证明等式时,验证,左边应取的项是 (  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

某个命题与正整数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得

A.n=6时该命题不成立 B.n=6时该命题成立
C.n=4时该命题不成立 D.n=4时该命题成立
  • 题型:未知
  • 难度:未知

在用数学归纳法证明时,在验证当时,等式左边为(  )

A.1 B. C. D.
  • 题型:未知
  • 难度:未知

给出以下数阵,按各数排列规律,则的值为

A. B. C. D.326
  • 题型:未知
  • 难度:未知

个不同的实数可得个不同的排列,每个排列为一行写成一个行的矩阵,
对第,记,(),例如由1、2、3
排数阵知:由于此数阵中每一列各数之和都是12,所以,那
么由1,2,3,4,5形成的数阵中,(  )

A.—3600 B.1800 C.—1080 D.—720
  • 题型:未知
  • 难度:未知

用数学归纳法证明“”时,由的假设证明时,如果从等式左边证明右边,则必须证得右边为(   )

A.
B.
C.
D.
  • 题型:未知
  • 难度:未知

是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 (  )

A.若成立,则成立
B.若成立,则当时,均有成立
C.若成立,则成立
D.若成立,则当时,均有成立
  • 题型:未知
  • 难度:未知

用数学归纳法证明,则当n=k+1时左端应在n=k的基础上增加 (  ) 

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法选择题