优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 解答题
高中数学

对于数集 X = - 1 , x 1 , x 2 , , x n ,其中 0 < x x < x 2 < < x n n 2 ,定义向量集 Y = a a = s , t , s X , t X . 若对于任意 a 1 Y ,存在 a 2 Y ,使得 a 1 . a 2 = 0 ,则称X具有性质 P .例如 X = - 1 , 1 , 2 具有性质 P .
(1)若 x > 2 ,且 - 1 , 1 , 2 , x ,求 x 的值;
(2)若 X 具有性质 P ,求证: 1 X ,且当 x n > 1 时, x 1 = 1
(3)若 X 具有性质 P ,且 x 1 = 1 , x 2 = q q 为常数),求有穷数列 x 1 , x 2 , , x n 的通项公式.

来源:2012年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

已知函数,当时,函数取得极大值.
(1)求实数的值;
(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有
(3)已知正数,满足,求证:当时,对任意大于,且互不相等的实数,都有.

  • 题型:未知
  • 难度:未知

用数学归纳法证明:

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数f(x)=x-ax + (a-1)
(I)讨论函数的单调性;
(II)若,数列满足
(1)  若首项,证明数列为递增数列;
(2)  若首项为正整数,数列递增,求首项的最小值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)已知数列的前n项和满足
,其中b是与n无关的常数,且
(1)求
(2)求的关系式;
(3)猜想用表示的表达式(须化简),并证明之。

  • 题型:未知
  • 难度:未知

已知 ,数列满足:

(1)用数学归纳法证明:
(2)已知
(3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由。

  • 题型:未知
  • 难度:未知

(1)当时,等式
是否成立?呢?
(2)假设时,等式成立.
能否推得时,等式也成立?时等式成立吗?

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法解答题