优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 解答题
高中数学

已知f(n)=1+n∈N),g(n)=2(-1)(n∈N).
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

  • 题型:未知
  • 难度:未知

数列满足
(1)计算,并由此猜想通项公式
(2)用数学归纳法证明(1)中的猜想.

  • 题型:未知
  • 难度:未知

设n∈N*,f(n)=1++…+,试比较f(n)与的大小.

  • 题型:未知
  • 难度:未知

在数列中,已知,且
(1)用数学归纳法证明:
(2)求证

  • 题型:未知
  • 难度:未知

用数学归纳法证明对n∈N都有.

  • 题型:未知
  • 难度:未知

在数列中,,且. 求,猜想的表达式,并加以证明.

  • 题型:未知
  • 难度:未知

已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较+++…+与1的大小,并说明理由.

  • 题型:未知
  • 难度:未知

【原创】
(1)观察下列各式;根据以上各式利用归纳推理得出一个一般性的结论;
(2)设根据的大小关系证明(1)的结论;

  • 题型:未知
  • 难度:未知

用数学归纳法证明:++…+= (n∈N*).

  • 题型:未知
  • 难度:未知

已知数列的前n项和为,且,令.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)若,用数学归纳法证明是18的倍数.

  • 题型:未知
  • 难度:未知

设函数其中的导函数.
(1)令,猜测的表达式并给予证明;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并说明理由.

  • 题型:未知
  • 难度:未知

已知函数,数列满足
(1)求
(2)猜想数列的通项,并用数学归纳法予以证明.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知数列满足.
(1)计算的值;
(2)根据以上计算结果猜想的通项公式,并用数学归纳法证明你的猜想.

  • 题型:未知
  • 难度:未知

观察下列各不等式:





(1)由上述不等式,归纳出一个与正整数有关的一般性结论;
(2)用数学归纳法证明你得到的结论.

  • 题型:未知
  • 难度:未知

是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法解答题