已知数列中,,且.为数列的前项和,且.
(1)求数列的通项公式;
(2)设,求数列的前项的和;
(3)证明对一切,有.
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项公式bn;
(2)设数列{an}的通项an=loga(其中a>0且a≠1).记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.
(本小题满分10分)
如图:假设三角形数表中的第n+1行的第二个数为(n≥1,n∈N*)
(1)归纳出与的关系式, 并求出的通项公式;
(2)设,求证:
已知数列的各项均为正整数,对于任意n∈N*,都有 成立,且.
(1)求,的值;
(2)猜想数列的通项公式,并给出证明.
【原创】
(1)观察下列各式;根据以上各式利用归纳推理得出一个一般性的结论;
(2)设根据的大小关系证明(1)的结论;
已知为等差数列,且,公差.
(1)数列满足结论;;试证:;
(2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.
试题篮
()