优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质
高中数学

已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

设函数
⑴ 求不等式的解集;
⑵ 如果关于的不等式上恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .

  • 题型:未知
  • 难度:未知

定义在上的偶函数,对任意实数都有,当时,,若在区间内,函数与函数的图象恰有4个交点,则实数的取值范围是__________.

  • 题型:未知
  • 难度:未知

点A(a+b,ab)在第一象限内,则直线bx+ay-ab=0不经过的象限是(  )

A.第一象限 B.第二象限 C.第三象限 D.第四象限
  • 题型:未知
  • 难度:未知

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

  • 题型:未知
  • 难度:未知

已知函数,若f(x)在x=1处的切线方程为3x+y-6=0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意的,都有f(x)成立,求函数g(t)的最值

  • 题型:未知
  • 难度:未知

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:
(1) 在[a,b]内是单调函数;
(2)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=的“和谐区间”.
下列函数中存在“和谐区间”的是            (只需填符合题意的函数序号).
;②;③;④.

  • 题型:未知
  • 难度:未知

函数恒过定点________  ____.

  • 题型:未知
  • 难度:未知

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中把草坪分成面积相等的两部分,上,上.

(1)设,求用表示的函数关系式;
(2)如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请说明理由.

  • 题型:未知
  • 难度:未知

已知函数处取得极小值.
(1)求的值;
(2)若处的切线方程为,求证:当时,曲线不可能在直线的下方.

  • 题型:未知
  • 难度:未知

已知m∈R,对p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“p且q”为假命题、“p或q”为真命题的实数m的取值范围.

  • 题型:未知
  • 难度:未知

设函数,且曲线斜率最小的切线与直线平行.求:(1)的值;(2)函数的单调区间.

  • 题型:未知
  • 难度:未知

设奇函数的定义域为R,最小正周期,若,则的取值范围是

A.  B.
C.   D.
  • 题型:未知
  • 难度:未知

设函数.
(1) 试问函数f(x)能否在x= 时取得极值?说明理由;
(2) 若a= ,当x∈[,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题