如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积
已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为( )
A. | B. | C. | D. |
一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
正方形的边长为2,点、分别在边、上,且,,将此正
方形沿、折起,使点、重合于点,则三棱锥的体积是( )
A. | B. | C. | D. |
如图,四边形为矩形,四边形为梯形,∥,,且平面平面,,点为的中点.
(1)求证:∥平面;
(2)求三棱锥的体积;
(3)试判断平面与平面是否垂直?若垂直,请证明;若不垂直,请说明理由.
如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点.
(1)求直三棱柱的全面积;
(2)求异面直线与所成角的大小(结果用反三角函数表示);
试题篮
()