如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,,,,.
(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.
如图,长方体中,,点分别在上,,过点的平面与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法与理由).
(2)求平面把该长方体分成的两部分体积的比值.
如图,三棱柱中,侧棱垂直底面,是棱的中点.
(1)证明:平面⊥平面;
(2)平面分此棱柱为两部分,求这两部分体积的比.
如图,在四棱锥中,,平面,平面,,,.
(Ⅰ)求棱锥的体积;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.
在如图所示的多面体ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,,F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.
如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点.
(1)求三棱锥的体积;
(2)求直线BD与平面FAC所成角的正弦值.
试题篮
()