选修4-4:极坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同.已知曲线的极坐标方程为,斜率为的直线交轴于点.
(1)求曲线的直角坐标方程,直线的参数方程;
(2)若直线与曲线交于两点,求的值.
如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN∥平面A′ACC′;
(Ⅱ)求三棱锥A′﹣MNC的体积.
(椎体体积公式V=Sh,其中S为底面面积,h为高)
设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),.
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范围.
已知函数f(x)=x2+2ax+2,x∈[﹣5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
已知二次函数f(x)满足条件:f(0)=1,f(x+1)=f(x)+2x
(Ⅰ)求f(x);
(Ⅱ)讨论二次函数f(x)在闭区间[t,t+1](t∈R)上的最小值.
已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.
已知集合A={x|x2﹣x﹣2>0},函数g(x)=的定义域为集合B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且C⊆A,求实数P的取值范围.
已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=.
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.
已知定义域为R的奇函数f(x),当x>0时,f(x)=x2﹣3.
(1)当x<0时,求函数f(x)的解析式;
(2)求函数f(x)在R上的解析式;
(3)解方程f(x)=2x.
已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
试题篮
()