已知椭圆方程为,它的一个顶点为,离心率.
(1)求椭圆的方程;
(2)设直线与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
在数列中,已知a1=2,an+1=4an-3n+1,n∈.
(1)设,求数列的通项公式;
(2)设数列的前n项和为Sn,证明:对任意的n∈,不等式Sn+1≤4Sn恒成立.
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
如图,四棱锥的底面是矩形,
底面,P为BC边的中点,SB与
平面ABCD所成的角为45°,且AD=2,SA=1.
(1)求证:平面SAP;
(2)求二面角A-SD-P的大小.
某项考试按科目、科目依次进行,只有当科目成绩合格时,才可以继续参加科目 的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目成绩合格的概率均为,每次考科目成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为。
(1)求的分布列和均值;
(2)求该同学在这项考试中获得合格证书的概率。
如图,抛物线的焦点为,椭
圆的离心率
与在第一象限的交点为。
(1)求抛物线及椭圆的方程;
(2)已知直线与椭圆交于不同两点,点满足,直线的斜率为,试证明
某化妆品生产企业为了占有更多的市场份额,拟在2010年世博会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量万件与年促销费万元之间满足与成反比例,如果不搞促销活动,化妆品的年销量只能是l万件,已知2010年生产化妆品的设备折旧、维修等固定费用为3万元,每生产l万件化妆品需要再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完。
(1)将2010年的利润(万元)表示为促销费 (万元)的函数;
(2)该企业2010年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)
如图,四棱锥的底面为一直角梯形,
其中底
面是的中点。
(1)求证:平面;
(2)若平面,
①求异面直线与所成角的余弦值;
②求二面角的余弦值。
在各项均为正数的数列中,前项和满足。
(1)证明是等差数列,并求这个数列的通项公式及前项和的公式;
(2)在平面直角坐标系面上,设点满足,且点在直线上,中最高点为,若称直线与轴、直线所围成的图形的面积为直线在区间上的面积,试求直线在区间上的面积;
(3)求出圆心在直线上的圆,使得点列中任何一个点都在该圆内部
试题篮
()