质谱仪可以测定有机化合物分子结构,质谱仪的结构如图1所示。有机物的气体分子从样品室注入“离子化”室,在高能电子作用下,样品气体分子离子化或碎裂成离子(如C2H6离子化后得到C2H6+、C2H2+、CH4+等)。若离子化后的离子均带一个单位的正电荷e,初速度为零,此后经过高压电源区、圆形磁场室,真空管,最后在记录仪上得到离子,通过处理就可以得到离子质荷比(m/e),进而推测有机物的分子结构。已知高压电源的电压为U,圆形磁场区的半径为R,真空管与水平面夹角为θ,离子进入磁场室时速度方向指向圆心。
(1)请说明高压电源A端应接“正极”还是“负极”,磁场室的磁场方向“垂直纸面向里”还是“垂直纸面向外”;
(2)C2H6+和C2H2+离子同时进入磁场室后,出现了轨迹I和II,试判定它们各自对应的轨迹,并说明原因;
(3)若磁感应强度为B时,记录仪接收到一个明显信号,求与该信号对应的离子质荷比(m/e);
(4)调节磁场室磁场的大小,在记录仪上可得到不同的离子。设离子的质荷比为β,磁感应强度大小为B,为研究方便可作B-β关系图线。当磁感应强度调至B0时,记录仪上得到的是H+,若H+的质荷比为β0,其B-β关系图线如图2所示,请作出记录仪上得到了CH4+时的B-β的关系图线。
回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。
(1)当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程。若碳11的半衰期τ为20min,经2.0h剩余碳11的质量占原来的百分之几?(结果取2位有效数字)
(2)回旋加速器的原理如图,D1和D2是两个中空的半径为R的半圆金属盒,它们接在电压一定、频率为f的交流电源上,位于D1圆心处的质子源A能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D1、D2置于与盒面垂直的磁感应强度为B的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P,求输出时质子束的等效电流I与P、B、R、f的关系式(忽略质子在电场中运动的时间,其最大速度远小于光速)
(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道的半径之差是增大、减小还是不变?
1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和医学设备中。某型号的回旋加速器的工作原理如图(甲)所示,图(乙)为俯视图。回旋加速器的核心部分为两个D形盒,分别为D1、D2。D形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D形盒底面垂直。两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。D形盒的半径为R,磁场的磁感应强度为B。设质子从粒子源A处进入加速电场的初速度不计。质子质量为m、电荷量为+q。加速器接入一定频率的高频交变电源,加速电压为U。加速过程中不考虑相对论效应和重力作用。
(1)求质子第1次经过狭缝被加速后进人D2盒时的速度大小v1;
(2)求质子第1次经过狭缝被加速后进人D2盒后运动的轨道半径r1;
(3)求质子从静止开始加速到出口处所需的时间t。
飞行时间质谱仪可对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。
(1)当a、b间的电压为U1,在M、N间加上适当的电压U2,使离子到达探测器。求离子到达探测器的全部飞行时间。
(2)为保证离子不打在极板上,试求U2与U1的关系。
如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条窄缝。两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小为U,磁场的磁感应强度为B,D型盒的半径为R。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零,求(1)为了使正离子每经过窄缝都被加速,求交变电压的频率(2)求离子能获得的最大动能(3)求离子第1次与第n次在下半盒中运动的轨道半径之比。
如图甲是质谱仪的工作原理示意图。图中的A容器中的正离子从狭缝S1以很小的速度进入电压为U的加速电场区(初速度不计)加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁感应强度为B,离子最终到达MN上的H点(图中未画出),测得G、H间的距离为d,粒子的重力可忽略不计。试求:
(1)该粒子的比荷
(2)若偏转磁场为半径为的圆形区域,且与MN相切于G点,如图乙所示,其它条件不变,仍保证上述粒子从G点垂直于MN进入偏转磁场,最终仍然到达MN上的H点,则磁感应强度与B的比为多少?
(17分)(2009·江苏高考)1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B的匀强磁场与盒面垂直,A处粒子源产生的粒子,质量为m,电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
图17
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应
强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
(12分)(2010·苏州模拟)质谱仪可测定同位素的组成.现有一束一价的钾39和钾41离
子经电场加速后,沿着与磁场和边界均垂直的方向进入匀强磁场中,
如图所示.测试时规定加速电压大小为U0,但在实验过程中加
速电压有较小的波动,可能偏大或偏小ΔU.为使钾39和钾41打在
照相底片上的区域不重叠,ΔU不得超过多少?(不计离子的重力)
1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为的匀强磁场与盒面垂直。处粒子源产生的粒子,质量为、电荷量为 ,在加速器中被加速,加速电压为。加速过程中不考虑相对论效应和重力作用。
(1) 求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2) 求粒子从静止开始加速到出口处所需的时间 ;
(3) 实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为、,试讨论粒子能获得的最大动能。
试题篮
()