质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造如图所示。设离子源S产生离子,离子产生出来时速度很小,可以看作速度为零。产生的离子经过电压为U的电场加速后(图中未画出),进入一平行板电容器C中,电场E和磁场B1相互垂直,具有某一速度的离子将沿图中虚直线穿过两板间的空间而不发生偏转,而具有其他速度的离子发生偏转。最后离子再进入磁感应强度为B2的匀强磁场,沿着半圆周运动,到达记录它的照相底片上的P点,根据以上材料回答下列问题:
(1)证明能穿过平行板电容器C的离子具有的速度为v=E/B1
(2)若测到P点到入口S1的距离为x,证明离子的质量m=qB22x2/8U
飞行时间质谱仪可对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。
(1)当a、b间的电压为U1,在M、N间加上适当的电压U2,使离子到达探测器。求离子到达探测器的全部飞行时间。
(2)为保证离子不打在极板上,试求U2与U1的关系。
(17分)(2009·江苏高考)1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图17所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B的匀强磁场与盒面垂直,A处粒子源产生的粒子,质量为m,电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应
强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
(12分)如图14所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q的质子,使质子由静止加速到能量为E后,由A孔射出,求:
(1)加速器中匀强磁场B的方向和大小;
(2)设两D形盒间距为d,其间电压为U,电场视为匀强电场,质子每次经电
场加速后能量增加,加速到上述能量所需回旋周数;
(3)加速到上述能量所需时间.
如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条窄缝。两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小为U,磁场的磁感应强度为B,D型盒的半径为R。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零,求
(1)为了使正离子每经过窄缝都被加速,求交变电压的频率
(2)求离子能获得的最大动能
(3)求离子第1次与第n次在下半盒中运动的轨道半径之比。
一个质量为m、电荷量为q的粒子,从容器A下方的小孔S1飘入电势差为U的加速电场,其初速度几乎为0,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上
(1)求粒子进入磁场时的速率。
(2)求粒子照相底片D点到S3的距离
如图所示为一质谱仪的构造原理示意图,整个装置处于真空环境中,离子源N可释放出质量均为m、电荷量均为q(q>0)的离子.离子的初速度很小,可忽略不计.离子经S1、S2间电压为U的电场加速后,从狭缝S3进入磁感应强度大小为B、方向垂直于纸面向外的匀强磁场中,沿着半圆运动到照相底片上的P点处,测得P到S3的距离为x.求:
(1)离子经电压为U的电场加速后的速度v;
(2)离子的比荷(q/m)
在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条窄缝。两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小为U,磁场的磁感应强度为B,D型盒的半径为R。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零,求(1)为了使正离子每经过窄缝都被加速,求交变电压的频率(2)求离子能获得的最大动能(3)求离子第1次与第n次在下半盒中运动的轨道半径之比。
如图甲是质谱仪的工作原理示意图。图中的A容器中的正离子从狭缝S1以很小的速度进入电压为U的加速电场区(初速度不计)加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁感应强度为B,离子最终到达MN上的H点(图中未画出),测得G、H间的距离为d,粒子的重力可忽略不计。试求:
(1)该粒子的比荷
(2)若偏转磁场为半径为的圆形区域,且与MN相切于G点,如图乙所示,其它条件不变,仍保证上述粒子从G点垂直于MN进入偏转磁场,最终仍然到达MN上的H点,则磁感应强度与B的比为多少?
如图所示为质谱仪的原理图,电荷量为、质量为m的带正电的粒子从静止开始经过电势差为U的加速电场后,进入粒子速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E,方向水平向右。带电粒子能够沿直线穿过速度选择器,从G点既垂直直线MN又垂直于磁场的方向射人偏转磁场。偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场。带电粒子经偏转磁场后,最终达到照相底片的H点。已知偏转磁场的磁感应强度为B2,带电粒子的重力可忽略不计。求:
粒子从加速电场射出时速度的大小;
粒子速度选择器中匀强磁场的磁感应强度B1的大小和方向;
带电粒子进入偏转磁场的G点到照相底片H点的距离L。
1932年劳伦斯制成了世界上第一台回旋加速器,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )
A.离子由加速器的中心附近进入加速器 |
B.离子由加速器的边缘进入加速器 |
C.离子从磁场中获得能量 |
D.离子从电场中获得能量 |
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2。今有一质量为m、电量为q的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,不计重力。求:
⑴ 粒子的速度v;
⑵ ⑵速度选择器的电压U2;
⑶ ⑶粒子在B2磁场中做匀速圆周运动的半径R。
(17分)(2009·江苏高考)1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B的匀强磁场与盒面垂直,A处粒子源产生的粒子,质量为m,电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
图17
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应
强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
试题篮
()