如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
如图所示,一带电粒子(重力忽略不计)质量为m=2.0×10-11 kg、电荷量q=+1.0×10-5 C,从静止开始经电压为U1=100 V的电场加速后,水平进入两平行金属板间的偏转电场中,粒子射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,粒子射出磁场时的偏转角也为θ=60°.已知偏转电场中金属板长L=2 cm,圆形匀强磁场的半径R=10 cm,求:
(1)带电粒子经U1=100 V的电场加速后的速率;
(2)两金属板间偏转电场的电场强度E;
(3)匀强磁场的磁感应强度的大小.
利用如图所示装置可调控带电粒子的运动,通过改变左端粒子入射速度的大小,可以控制粒子到达右端接收屏上的位置,装置的上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,磁场区域的宽度均为h,磁场区域长均为15h,P、Q为接收屏上的二点,P位于轴线上,Q位于下方磁场的下边界上。在纸面内,质量为m、电荷量为+q的粒子以某一速度从装置左端的中点射入,方向与轴线成370角,经过上方的磁场区域一次,恰好到达Q点。不计粒子的重力 (sin370=0.6、cos370=0.8)。问:
(1)上下两磁场间距x为多少?
(2)仅改变入射粒子的速度大小,使粒子能打到屏上P点,求此情况下入射速度大小的所有可能值。
|
如图所示,在xOy坐标系中,x轴上N点到O点的距离是12cm,虚线NP与x轴负向的夹角是30°。第Ⅰ象限内NP的上方有匀强磁场,磁感应强度B=1T,第IV象限有匀强电场,方向沿y轴正向。一质量m=8×10-10kg,电荷量q=1×10-4C带正电粒子,从电场中M(12cm,-8cm)点由静止释放,经电场加速后从N点进入磁场,又从y轴上P点穿出磁场。不计粒子重力,取π=3求:
(1)粒子在磁场中运动的速度v;
(2)粒子在磁场中运动的时间t;
(3)匀强电场的电场强度E。
如图所示,匀强磁场B1垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力作用下从静止开始运动,通过互感,使电压表示数U保持不变。定值电阻的阻值为R,变阻器的最大阻值为。在电场作用下,带正电粒子源从O1由静止开始经O2小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B,方向垂直纸面向外,其下边界AD与AC的夹角。设带电粒子的电荷量为q、质量为m,A端离小孔的高度为高度,请注意两线圈绕法,不计粒子重力,已知;。
求:(1)为满足要求,试判断金属棒应在外力作用下做何种运动?
(2)调节变阻器的滑动头,使接入电阻为多大时,粒子刚好不会打在AD板上?
(3)调节的滑动头,从题(2)中的位置缓慢移动到接入电阻为处 ,求源源不断的粒子打在AD边界上的落点间的最大距离(用表示)。
如右图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m,带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中的磁感应强度的大小。(忽略粒子重力)。
如图所示是测定光电效应产生的光电子比荷的简要实验原理图,M、N两块平行板相距为d,其中N板受紫外线照射后,将在N板的上侧空间发射沿不同方向、不同初动能的光电子,有些落到M板形成光电流,从而引起电流计G的指针偏转,若调节R0逐渐增大极板间电压,可以发现电流逐渐减小,当电压表示数为U时,电流恰好为零。切断开关,在MN间加垂直于纸面的匀强磁场,逐渐增大磁感强度,也能使电流减小,当磁感强度为B时,电流恰为零。试求光电子的比荷e/m?
分如图所示,某放射源A中均匀地向外辐射出平行于y轴的、速度一定的a粒子(质量为m,电荷量为+q)。为测定其飞出的速度大小,现让其先经过一个磁感应强度为B、区域为半圆形的匀强磁场,经该磁场偏转后,它恰好能够沿x轴进入右侧的平行板电容器,并打到置于N板上的荧光屏上。调节滑动触头,当触头P位于滑动变阻器的中央位置时,通过显微镜头Q看到屏上的亮点恰好能消失.已知电源电动势为E,内阻为r0,滑动变阻器的总阻值R0="2" r0,问:
(1)a粒子的速度大小v0=?
(2)满足题意的a粒子,在磁场中运动的总时间t=?
(3)该半圆形磁场区域的半径R=?
如图所示,在半径为a的圆形区域内充满磁感应强度大小为的均匀磁场,其方向垂直于纸面向里.在圆形区域平面内固定放置一绝缘材料制成的边长为L=1.2a的刚性等边三角形框架,其中心位于圆形区域的圆心.边上点(DS=L/2)处有一发射带电粒子源,发射粒子的方向皆在图示平面内且垂直于边,发射粒子的电量皆为(>0),质量皆为,但速度有各种不同的数值.若这些粒子与三角形框架的碰撞均无机械能损失,并要求每一次碰撞时速度方向垂直于被碰的边.试问:(1)若发射的粒子速度垂直于边向上,这些粒子中回到点所用的最短时间是多少?(2)若发射的粒子速度垂直于边向下,带电粒子速度的大小取哪些数值时可使点发出的粒子最终又回到点?这些粒子中,回到点所用的最短时间是多少?(不计粒子的重力和粒子间的相互作用)
如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L、质量为m的直导体棒,导体棒中通有大小为I、方向垂直纸面向里的电流,欲使导体棒静止在斜面上,可以施加方向垂直于导体棒的匀强磁场。求:
(1)若匀强磁场的方向在竖直方向,则磁场方向是向上还是向下?磁感应强度B1为多大?
(2)若导体棒与斜面间无挤压,则施加的磁场方向如何?则磁感应强度B2为多大?
(3)沿什么方向施加匀强磁场可使磁感应强度最小?最小值B3为多少?
在xoy平面内存在着如图所示的电场和磁场,其中二、四象限内电场方向与y轴平行且相反,大小为E,一、三象限内磁场方向垂直平面向里,大小相等.一个带电粒子质量为m,电荷量为q,从第四象限内的P(L,﹣L)点由静止释放,粒子垂直y轴方向进入第二象限,求:
(1)磁场的磁感应强度B;
(2)粒子第二次到达y轴的位置;
(3)粒子从释放到第二次到达y轴所用时间.
(18分)在竖直平面内,以虚线为界分布着如图所示的匀强电场和足够大的匀强磁场,各区域磁场的磁感应强度大小均为,匀强电场方向竖直向下,大小为,倾斜虚线与轴之间的夹角为60°,竖直虚线与轴的交点为点.一带正电的粒子从点以速度与轴成30o角射入左侧磁场,划过一段圆弧后粒子穿过倾斜虚线进入匀强电场,经电场偏转后恰好从A点射出进入右侧轴下方磁场区域.已知带正电粒子的电荷量为,质量为(粒子重力忽略不计).求:
(1)带电粒子通过倾斜虚线时的位置坐标;
(2)粒子到达点时速度的大小和方向以及匀强电场的宽度;
(3)若在粒子从点出发的同时,一不带电的粒子从点以速度沿轴正方向匀速运动,最终两粒子相碰,求粒子速度的可能值.
如图所示,带电平行金属板PQ和MN之间的距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
如图所示,在平面直角坐标系第Ⅲ象限内充满+y 方向的匀强电场, 在第Ⅰ象限的某个圆形区域内有垂直于纸面的匀强磁场(电场、磁场均未画出);一个比荷为的带电粒子以大小为 v 0的初速度自点沿+x 方向运动,恰经原点O进入第Ⅰ象限,粒子穿过匀强磁场后,最终从 x轴上的点 Q(9d,0 )沿-y 方向进入第Ⅳ象限;已知该匀强磁场的磁感应强度为 ,不计粒子重力。
(1)求第Ⅲ象限内匀强电场的场强E的大小;
(2)求粒子在匀强磁场中运动的半径R及时间t B;
(3)求圆形磁场区的最小半径rm。
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板和,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达时的速度大小和极板距离
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小
试题篮
()