如图所示,圆形匀强磁场半径R="l" cm,磁感应强度B=IT,方向垂直纸面向里,其上方有一对水平放置的平行金属板M、N,间距d=1cm,N板中央开有小孔S。小孔位于圆心O的正上方,S与0的连线交磁场边界于A.两金属板通过导线与匝数为100匝的矩形线圈相连(为表示线圈的绕向,图中只画了2匝),线圈内有垂直纸面向里且均匀增加的磁场,穿过线圈的磁通量变化率为△Φ/△t=100Wb/s。位于磁场边界上某点(图中未画出)的离子源P,在纸面内向磁场区域发射速度大小均为v=5×105m/s,方向各不相同的带正电离子,离子的比荷q/m=5×107C/kg,已知从磁场边界A点射出的离子恰好沿直线AS进入M、N间的电场.(不计离子重力;离子碰到极板将被吸附)求:
(1)M、N之间场强的大小和方向;
(2)离子源P到A点的距离;
(3)沿直线AS进入M、N间电场的离子在磁场中运动的总时间(计算时取π=3).
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?
如图所示,足够长、宽度L1=0.1m、方向向左的有界匀强电场场强E=70 V/m,电场左边是足够长、宽度L2=0.2 m、磁感应强度B=2×10-3 T的有界匀强磁场。一带电粒子电荷量q=+3.2×10-19C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出。(粒子重力不计)求:
(1)带电粒子在磁场中运动的轨道半径和时间;
(2)带电粒子飞出电场时的速度大小。
(18分)如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁场,MN过平台右端并与水平方向呈θ=37°.在平台左端放一个可视为质点的A球,其质量为mA=0.17kg,电量为q=+0.1C,现给A球不同的水平速度,使其飞出平台后恰好能做匀速圆周运动.g取10m/s2.
(1)求电场强度的大小和方向;
(2)要使A球在MNPQ区域内的运动时间保持不变,则A球的速度应满足的条件?(A球飞出MNPQ区域后不再返回)
(3)在平台右端再放一个可视为质点且不带电的绝缘B球,A球以vA0=3m/s的速度水平向右运动,与B球碰后两球均能垂直PQ边界飞出,则B球的质量为多少?
如图所示,M、N为加速电场的两极板,M板中心有一小孔Q,其正上方有一半径为R1=1m的圆形磁场区域,圆心为0,另有一内半径为R1 ,外半径为m的同心环形磁场区域,区域边界与M板相切于Q点,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一比荷C/kg带正电粒子从N板的P点由静止释放,经加速后通过小孔Q,垂直进入环形磁场区域。已知点P、Q、O在同一竖直线上,不计粒子的重力,且不考虑粒子的相对论效应。
(1) 若加速电压V,求粒子刚进入环形磁场时的速率v0
(2)要使粒子能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3) 在某加速电压下粒子进入圆形磁场区域,恰能水平通过圆心O,之后返回到出发点P,求粒子从Q孔进人磁场到第一次回到Q点所用的时间。
如图所示,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N。一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g).
(1)判断小球的带电性质并求出其所带电荷量;
(2)P点距坐标原点O至少多高;
(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间t=2小球距坐标原点O的距离s为多远?
如图所示,在xoy平面内第二象限的某区域存在一个矩形匀强磁场区,磁场方向垂直xoy平面向里,边界分别平利于x轴和y轴。一电荷量为e、质量为m的电子,从坐标原点为O以速度v0射入第二象限,速度方向与y轴正方向成45°角,经过磁场偏转后,通过P(0,a)点,速度方向垂直于y轴,不计电子的重力。
(1)若磁场的磁感应强度大小为B0,求电子在磁场中运动的时间t;
(2)为使电子完成上述运动,求磁感应强度的大小应满足的条件;
(3)若电子到达y轴上P点时,撤去矩形匀强磁场,同时在y轴右侧加方向垂直xoy平面向里的匀强磁场,磁感应强度大小为B1,在y轴左侧加方向垂直xoy平面向里的匀强电场,电子在第(k+1)次从左向右经过y轴(经过P点为第1次)时恰好通过坐标原点。求y轴左侧磁场磁感应强度大小B2及上述过程电子的运动时间t。
如图甲所示,直角坐标系xoy的第二象限有一半径为R=a的圆形区域,圆形区域的圆心坐标为(-a,a),与坐标轴分别相切于P点和N点,整个圆形区域内分布有磁感应强度大小为B的匀强磁场,其方向垂直纸面向里(图中未画出).带电粒子以相同的速度在纸面内从P点进入圆形磁场区域,速度方向与x轴负方向成θ角,当粒子经过y轴上的M点时,速度方向沿x轴正方向,已知M点坐标为(0,4a/3).带电粒子质量为m、带电量为–q.忽略带电粒子间的相互作用力,不计带电粒子的重力,求:
(1)带电粒子速度大小和cosθ值;
(2)若带电粒子从M点射入第一象限,第一象限分布着垂直纸面向里的匀强磁场,已知带电粒子在该磁场的一直作用下经过了x轴上的Q点,Q点坐标为(a,0),该磁场的磁感应强度B′大小为多大?
(3)若第一象限只在y轴与直线x=a之间的整个区域内有匀强磁场,磁感应强度大小仍为B.方向垂直纸面,磁感应强度B随时间t变化(B—t图)的规律如图乙所示,已知在t=0时刻磁感应强度方向垂直纸面向外,此时某带电粒子刚好从M点射入第一象限,最终从直线x=a边界上的K点(图中未画出)穿出磁场,穿出磁场时其速度方向沿x轴正方向(该粒子始终只在第一象限内运动),则K点到x轴最大距离为多少?要达到此最大距离,图乙中的T值为多少?
如图所示,在以坐标原点O为圆心、半径为R的圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带负电的粒子(不计重力)从A点沿y轴正方向以v0速度射入,带电粒子恰好做匀速直线运动,最后从P点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去电场,带电粒子仍从A点以相同的速度射入,恰从圆形区域的边界M点射出。已知OM与x轴的夹角为θ=300,求粒子比荷q/m。
(3)若仅撤去磁场,带电粒子仍从A点以速度v射入,恰从圆形区域的边界N点射出(M和N是关于y轴的对称点),求粒子运动初速度v的大小.
如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d = m,两金属板间电压UMN = 1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10 kg,带电量q = +1×10-4 C,初速度v0 = 1×105 m/s。
(1)求带电粒子从电场中射出时的速度v的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件。
如图所示,在竖直平面建立直角坐标系xOy,y轴左侧存在一个竖直向下的宽度为d的匀强电场,右侧存在一个宽度也为d的垂直纸面向里的匀强磁场,磁感应强度为B,现有一个质量为m,带电荷量为+q的微粒(不计重力),从电场左边界PQ以某一速度垂直进入电场,经电场偏转后恰好从坐标原点以与x轴正方向成θ=30°夹角进入磁场:
(1)假设微粒经磁场偏转后以垂直MN边界射出磁场,求:电场强度E为多少?
(2)假设微粒经磁场偏转后恰好不会从MN边界射出磁场,且当粒子重新回到电场中时,此时整个x<0的区域充满了大小没有改变但方向逆时针旋转了30°角的匀强电场。求微粒从坐标原点射入磁场到从电场射出再次将射入磁场的时间?
如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B =0.01 T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO’方向。磁场边界MN与中线OO’垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1) 在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射人电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3) 对于所有经过电场射入磁场的带电粒子,设其射人磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围。
(原创)如图甲所示,平行放置的金属板A、B间电压为U0,中心各有一个小孔P、Q;平行放置的金属板C、D间电压变化规律如图乙,板长和板间距均为L;粒子接收屏M与D板夹角为. 现从P点处连续不断地有质量为 m、带电量为+q的粒子放出(粒子的初速度可忽略不计),经加速后从Q点射出,贴着C板并平行C板射入,经周期T粒子恰好通过C、D间电场(粒子间相互作用力忽略不计,重力不计,,).
(1)T与上述物理量之间应满足怎样的关系;
(2)若在t=0时刻进入C、D间电场的粒子恰从D板边缘飞出,则U为多少?并求此粒子射出时的速度v;
(3)在(2)的条件下,欲使从C、D间飞出的粒子汇聚在M板上某一点,并使在时刻进入C、D间的粒子垂直打在M板上,可在C、D右边某处加一垂直纸面的匀强磁场,试求磁感应强度B的大小和磁场的最小面积Smin.
(18分)如图所示,在xOy平面内,y轴左侧有一个方向竖直向下,水平宽度为L=×10-2 m,电场强度为E=1.0×104 N/C的匀强电场。在y轴右侧有一个圆心位于x轴上,半径r=0.01 m的圆形磁场区域,磁场方向垂直纸面向里,磁场感应强度B=0.01 T,坐标为x0=0.04 m处有一垂直于x轴的面积足够大的荧光屏PQ,今有一带正电的粒子从电场左侧沿+x轴方向射入电场,穿过电场时恰好通过坐标原点,速度大小v=2×106 m/s,方向与x轴成30°斜向下。若粒子的质量m=1.0×10-20 kg,电荷量q=1.0×10-10 C,粒子重力不计,试求:
(1)粒子射入电场时位置的纵坐标和初速度的大小;
(2)粒子在圆形磁场中运动的最长时间;
(3)若圆形磁场可以沿x轴移动,圆心O′在x轴上的移动范围为(0.01,+∞),由于磁场位置的不同,导致该粒子打在荧光屏上的位置也不同,试求粒子打在荧光屏上的范围。
在真空室内取坐标系xOy,在x轴上方存在二个方向都垂直于纸面向外的磁场区Ⅰ和Ⅱ(如图),平行于x轴的虚线MM’和NN’是它们的边界线,两个区域在y方向上的宽度都为d、在x方向上都足够长.Ⅰ区和Ⅱ区内分别充满磁感应强度为B和的匀强磁场.一带正电的粒子质量为m、电荷量为q,从坐标原点O以大小为v的速度沿y轴正方向射入Ⅰ区的磁场中.不计粒子的重力作用.
(1)如果粒子只是在Ⅰ区内运动而没有到达Ⅱ区,那么粒子的速度v满足什么条件?粒子运动了多长时间到达x轴?
(2)如果粒子运动过程经过Ⅱ区而且最后还是从x轴离开磁场,那么粒子的速度v又满足什么条件?并求这种情况下粒子到达x轴的坐标范围?
试题篮
()