优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

平面直角坐标系 xOy 中,横坐标为 a 的点 A 在反比例函数 y 1 = = k x ( x > 0 ) 的图象上,点 A ' 与点 A 关于点 O 对称,一次函数 y 2 = mx + n 的图象经过点 A '

(1)设 a = 2 ,点 B ( 4 , 2 ) 在函数 y 1 y 2 的图象上.

①分别求函数 y 1 y 2 的表达式;

②直接写出使 y 1 > y 2 > 0 成立的 x 的范围;

(2)如图①,设函数 y 1 y 2 的图象相交于点 B ,点 B 的横坐标为 3 a ,△ A A ' B 的面积为16,求 k 的值;

(3)设 m = 1 2 ,如图②,过点 A AD x 轴,与函数 y 2 的图象相交于点 D ,以 AD 为一边向右侧作正方形 ADEF ,试说明函数 y 2 的图象与线段 EF 的交点 P 一定在函数 y 1 的图象上.

来源:2018年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,直线 l 表示一条东西走向的笔直公路,四边形 ABCD 是一块边长为100米的正方形草地,点 A D 在直线 l 上,小明从点 A 出发,沿公路 l 向西走了若干米后到达点 E 处,然后转身沿射线 EB 方向走到点 F 处,接着又改变方向沿射线 FC 方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设 AE = x 米(其中 x > 0 ) GA = y 米,已知 y x 之间的函数关系如图②所示,

(1)求图②中线段 MN 所在直线的函数表达式;

(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即 ΔEFG ) 是否可以是一个等腰三角形?如果可以,求出相应 x 的值;如果不可以,说明理由.

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

【定义】如图1, A B 为直线 l 同侧的两点,过点 A 作直线 l 的对称点 A ' ,连接 A ' B 交直线 l 于点 P ,连接 AP ,则称点 P 为点 A B 关于直线 l 的“等角点”.

【运用】如图2,在平面直角坐标系 xOy 中,已知 A ( 2 , 3 ) B ( 2 , 3 ) 两点.

(1) C ( 4 , 3 2 ) D ( 4 , 2 2 ) E ( 4 , 1 2 ) 三点中,点  C  是点 A B 关于直线 x = 4 的等角点;

(2)若直线 l 垂直于 x 轴,点 P ( m , n ) 是点 A B 关于直线 l 的等角点,其中 m > 2 APB = α ,求证: tan α 2 = n 2

(3)若点 P 是点 A B 关于直线 y = ax + b ( a 0 ) 的等角点,且点 P 位于直线 AB 的右下方,当 APB = 60 ° 时,求 b 的取值范围(直接写出结果).

来源:2018年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

结果如此巧合 !

下面是小颖对一道题目的解答.

题目:如图, Rt Δ ABC 的内切圆与斜边 AB 相切于点 D AD = 3 BD = 4 ,求 ΔABC 的面积.

解:设 ΔABC 的内切圆分别与 AC BC 相切于点 E F CE 的长为 x

根据切线长定理,得 AE = AD = 3 BF = BD = 4 CF = CE = x

根据勾股定理,得 ( x + 3 ) 2 + ( x + 4 ) 2 = ( 3 + 4 ) 2

整理,得 x 2 + 7 x = 12

所以 S ΔABC = 1 2 AC · BC

= 1 2 ( x + 3 ) ( x + 4 )

= 1 2 ( x 2 + 7 x + 12 )

= 1 2 × ( 12 + 12 )

= 12

小颖发现12恰好就是 3 × 4 ,即 ΔABC 的面积等于 AD BD 的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知: ΔABC 的内切圆与 AB 相切于点 D AD = m BD = n

可以一般化吗?

(1)若 C = 90 ° ,求证: ΔABC 的面积等于 mn

倒过来思考呢?

(2)若 AC · BC = 2 mn ,求证 C = 90 °

改变一下条件

(3)若 C = 60 ° ,用 m n 表示 ΔABC 的面积.

来源:2018年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = 1 3 x 2 + bx + 2 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( 4 , 0 ) P 是抛物线上一点(点 P 与点 A B C 不重合).

(1) b =   ,点 B 的坐标是  

(2)设直线 PB 与直线 AC 相交于点 M ,是否存在这样的点 P ,使得 PM : MB = 1 : 2 ?若存在,求出点 P 的横坐标;若不存在,请说明理由;

(3)连接 AC BC ,判断 CAB CBA 的数量关系,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线 y = x 2 + bx 3 经过点 ( 1 , 0 ) ,则 b =   ,顶点坐标为  ,该抛物线关于点 ( 0 , 1 ) 成中心对称的抛物线表达式是  

抽象感悟:

我们定义:对于抛物线 y = a x 2 + bx + c ( a 0 ) ,以 y 轴上的点 M ( 0 , m ) 为中心,作该抛物线关于点 M 中心对称的抛物线 y ' ,则我们又称抛物线 y ' 为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.

(2)已知抛物线 y = x 2 2 x + 5 关于点 ( 0 , m ) 的衍生抛物线为 y ' ,若这两条抛物线有交点,求 m 的取值范围.

问题解决:

(3)已知抛物线 y = a x 2 + 2 ax b ( a 0 )

①若抛物线 y 的衍生抛物线为 y ' = b x 2 2 bx + a 2 ( b 0 ) ,两抛物线有两个交点,且恰好是它们的顶点,求 a b 的值及衍生中心的坐标;

②若抛物线 y 关于点 ( 0 , k + 1 2 ) 的衍生抛物线为 y 1 ,其顶点为 A 1 ;关于点 ( 0 , k + 2 2 ) 的衍生抛物线为 y 2 ,其顶点为 A 2 ;关于点 ( 0 , k + n 2 ) 的衍生抛物线为 y n ,其顶点为 A n ( n 为正整数).求 A n A n + 1 的长(用含 n 的式子表示).

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 P 为锐角 MAN 内部一点,过点 P PB AM 于点 B PC AN 于点 C ,以 PB 为直径作 O ,交直线 CP 于点 D ,连接 AP BD AP O 于点 E

(1)求证: BPD = BAC

(2)连接 EB ED ,当 tan MAN = 2 AB = 2 5 时,在点 P 的整个运动过程中.

①若 BDE = 45 ° ,求 PD 的长.

②若 ΔBED 为等腰三角形,求所有满足条件的 BD 的长.

(3)连接 OC EC OC AP 于点 F ,当 tan MAN = 1 OC / / BE 时,记 ΔOFP 的面积为 S 1 ΔCFE 的面积为 S 2 ,请写出 S 1 S 2 的值.

来源:2018年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,点 D BC ̂ 上,点 E 在弦 AB ( E 不与 A 重合),且四边形 BDCE 为菱形.

(1)求证: AC = CE

(2)求证: B C 2 A C 2 = AB · AC

(3)已知 O 的半径为3.

①若 AB AC = 5 3 ,求 BC 的长;

②当 AB AC 为何值时, AB · AC 的值最大?

来源:2018年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,公交车行驶在笔直的公路上,这条路上有 A B C D 四个站点,每相邻两站之间的距离为5千米,从 A 站开往 D 站的车称为上行车,从 D 站开往 A 站的车称为下行车,第一班上行车、下行车分别从 A 站、 D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在 A D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米 / 小时.

(1)问第一班上行车到 B 站、第一班下行车到 C 站分别用时多少?

(2)若第一班上行车行驶时间为 t 小时,第一班上行车与第一班下行车之间的距离为 s 千米,求 s t 的函数关系式;

(3)一乘客前往 A 站办事,他在 B C 两站间的 P 处(不含 B C 站),刚好遇到上行车, BP = x 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到 B 站或走到 C 站乘下行车前往 A 站.若乘客的步行速度是5千米 / 小时,求 x 满足的条件.

来源:2018年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ OAB 的直角边 OA x 轴上,顶点 B 的坐标为 ( 6 , 8 ) ,直线 CD AB 于点 D ( 6 , 3 ) ,交 x 轴于点 C ( 12 , 0 )

(1)求直线 CD 的函数表达式;

(2)动点 P x 轴上从点 ( 10 , 0 ) 出发,以每秒1个单位的速度向 x 轴正方向运动,过点 P 作直线 l 垂直于 x 轴,设运动时间为 t

①点 P 在运动过程中,是否存在某个位置,使得 PDA = B ,若存在,请求出点 P 的坐标;若不存在,请说明理由;

②请探索当 t 为何值时,在直线 l 上存在点 M ,在直线 CD 上存在点 Q ,使得以 OB 为一边, O B M Q 为顶点的四边形为菱形,并求出此时 t 的值.

来源:2018年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° AC = 12 .点 D 在直线 CB 上,以 CA CD 为边作矩形 ACDE ,直线 AB 与直线 CE DE 的交点分别为 F G

(1)如图,点 D 在线段 CB 上,四边形 ACDE 是正方形.

①若点 G DE 的中点,求 FG 的长.

②若 DG = GF ,求 BC 的长.

(2)已知 BC = 9 ,是否存在点 D ,使得 ΔDFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学试题